Skip to main content
Log in

Hybrid deep transfer learning-based early diagnosis of autism spectrum disorder using scalogram representation of electroencephalography signals

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Early diagnosis of autism spectrum disorder (ASD) plays an important role in the rehabilitation of the patient. This goal necessitates higher-level pattern representation and a strong modeling approach. The proposed approach applies scalogram images of electroencephalography signals for the first purpose and a two-level deep learning architecture for better classification. Scalogram images embed both the temporal and spectral information of the signal. On the other hand, the hybrid deep learning hierarchy of convolutional neural network followed by long short-term memory models both spatial and temporal information of the scalogram image. The approach is evaluated on a dataset of 34 ASD samples and 11 normal cases in without-voice and with-voice conditions. To validate the early diagnosis hypothesis, signals from children older than 5 years are used as the training set, and signals from younger subjects are used as the validation set. The proposed method achieves excellent performance of 99.50% and 98.43% for automatically detecting ASD with and without voice, respectively. This classification performance is higher than most recent reported approaches, and the results show the effectiveness of the approach in early diagnosis of ASD and demonstrate the auditory impact on the diagnosis of autism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zeidan J, Fombonne E, Scorah J, Ibrahim A, Durkin MS, Saxena S, Yusuf A, Shih A, Elsabbagh M (2022) Global prevalence of autism: a systematic review update. Autism Res 15(5):778–790. https://doi.org/10.1002/aur.2696

    Article  PubMed  PubMed Central  Google Scholar 

  2. Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, Swerdlow NR, Braff DL (2010) Electroencephalography (EEG) and event-related potentials (ERPs) with human participants. Curr Protoc Neurosci Chapter 6:Unit 6.25.1-24. https://doi.org/10.1002/0471142301.ns0625s52

  3. Das S, Zomorrodi R, Mirjalili M, Kirkovski M, Blumberger DM, Rajji TK, Desarkar P (2023) Machine learning approaches for electroencephalography and magnetoencephalography analyses in autism spectrum disorder: a systematic review. Prog Neuro-Psychopharmacol Biol Psychiatry 123:110705. https://doi.org/10.1016/j.pnpbp.2022.110705

    Article  Google Scholar 

  4. Rezaee K, Khosravi MR, Ghayoumizadeh H, Moghimi MK, Samara G, Attar H, Almatarneh S (2022) Diagnostic tools for detecting autism spectrum disorder: A review. 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI). pp 1–6. https://doi.org/10.1109/EICEEAI56378.2022.10050460

  5. Sheikhani A, Behnam H, Mohammadi MR, Noroozian M (2008) Golabi P (2008) Connectivity analysis of quantitative Electroencephalogram background activity in Autism disorders with short time Fourier transform and Coherence values. In Proceedings of the Congress on Image and Signal Processing, Sanya, China 27–30:207–212. https://doi.org/10.1109/CISP.2008.595

  6. Sheikhani A, Behnam H, Mohammadi MR, Noroozian M, Mohammadi M (2012) Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. J Med Syst 36(2):957–963. https://doi.org/10.1007/s10916-010-9560-6

    Article  PubMed  Google Scholar 

  7. Cheong LC, Sudirman R, Hussin S (2015) Feature extraction of EEG signal using wavelet transform for autism classification. J Eng Appl Sci 10(19):8533–8540

    Google Scholar 

  8. Sinha T, Munot MV, Sreemathy R (2022) An Efficient approach for detection of autism spectrum disorder using electroencephalography signal. IETE J Res 68(2):824–832. https://doi.org/10.1080/03772063.2019.1622462

    Article  Google Scholar 

  9. Bosl W, Tierney A, Tager-Flusberg H, Nelson C (2011) EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med 9(1):18. https://doi.org/10.1186/1741-7015-9-18

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abdolzadegan D, Moattar MH, Ghoshuni M (2020) A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method. Biocybern Biomed Eng 40(1):482–493. https://doi.org/10.1016/j.bbe.2020.01.008

    Article  Google Scholar 

  11. Subudhi AK, Mohanty M, Sahoo SK, Mohanty SK, Mohanty B (2023) Automated delimitation and classification of autistic disorder using EEG signal. IETE J Res 69(2):951–959. https://doi.org/10.1080/03772063.2020.1844076

    Article  Google Scholar 

  12. Tawhid MNA, Siuly S, Wang H (2020) Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach. Electron Lett 56(25):1372–1375. https://doi.org/10.1049/el.2020.2646

    Article  Google Scholar 

  13. Ahmadlou M, Adeli H, Adeli A (2010) Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol 27(5):328–333. https://doi.org/10.1097/WNP.0b013e3181f40dc8

    Article  PubMed  Google Scholar 

  14. Ahmadlou M, Adeli H, Adeli A (2012) Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder. Phys A Stat Mech its Appl 391(20):4720–4726. https://doi.org/10.1016/j.physa.2012.04.025

    Article  Google Scholar 

  15. Djemal R, AlSharabi K, Ibrahim S, Alsuwailem A (2017) EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN. Biomed Res Int 2017:1–9. https://doi.org/10.1155/2017/9816591

    Article  Google Scholar 

  16. Jayarathna S, Jayawardana Y, Jaime M, Thapaliya S (2019) Electroencephalogram (EEG) for delineating objective measure of autism spectrum disorder. ArXiv preprint 34–65. arXiv:1907.01515. https://doi.org/10.48550/arXiv.1907.01515

  17. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  18. Szegedy C et al (2015) Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA, pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  19. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. ArXiv preprint. https://doi.org/10.48550/arXiv.1602.07360

  20. Faust O, Acharya UR, Adeli H, Adeli A (2015) Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26:56–64. https://doi.org/10.1016/j.seizure.2015.01.012

    Article  PubMed  Google Scholar 

  21. Wachowiak MP, Wachowiak-Smolíková R, Johnson MJ, Hay DC, Power KE, Williams-Bell FM (2018) Quantitative feature analysis of continuous analytic wavelet transforms of electrocardiography and electromyography. Philos Trans R Soc A Math Phys Eng Sci 376(2126):20170250. https://doi.org/10.1098/rsta.2017.0250

    Article  Google Scholar 

  22. Salimova KR (2022) Neurophysiological correlates of impaired development in autism spectrum disorder (ASD). Biol Bull Rev 12(2):140–148. https://doi.org/10.1134/S2079086422020074

    Article  Google Scholar 

  23. Deidda G, Bozarth IF, Cancedda L (2014) Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 8:119. https://doi.org/10.3389/fncel.2014.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pineda JA (2005) The functional significance of mu rhythms: translating ‘seeing’ and ‘hearing’ into ‘doing.’ Brain Res Rev 50(1):57–68. https://doi.org/10.1016/j.brainresrev.2005.04.005

    Article  PubMed  Google Scholar 

  25. Schopler E, Reichler RJ, DeVellis RF, Daly K (1980) Toward objective classification of childhood autism childhood autism rating scale (CARS). J Autism Dev Disord 10(1):91–103. https://doi.org/10.1007/BF02408436

    Article  CAS  PubMed  Google Scholar 

  26. Tawhid MNA, Siuly S, Wang H, Whittaker F, Wang K, Zhang Y (2021) A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG. PLoS ONE 16(6):e0253094. https://doi.org/10.1371/journal.pone.0253094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pham TH, Vicnesh J, Wei JKE, Oh SL, Arunkumar N, Abdulhay EW, Ciaccio EJ, Acharya UR (2020) Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals. Int J Environ Res Public Health 17(3):971. https://doi.org/10.3390/ijerph17030971

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oh SL, Jahmunah V, Arunkumar N, Abdulhay EW, Gururajan R, Adib N, Ciaccio EJ, Cheong KH, Acharya UR (2021) A novel automated autism spectrum disorder detection system. Complex Intell Syst 7(5):2399–2413. https://doi.org/10.1007/s40747-021-00408-8

    Article  Google Scholar 

  29. Baygin M, Dogan S, Tuncer T, Barua PD, Faust O, Arunkumar N, Abdulhay EW, Palmer EE, Acharya UR (2021) Automated ASD detection using hybrid deep lightweight features extracted from EEG signals. Comput Biol Med 134:104548. https://doi.org/10.1016/j.compbiomed.2021.104548

    Article  PubMed  Google Scholar 

  30. Bajestani GS, Behrooz M, Khani AG, Nouri-Baygi M, Mollaei A (2019) Diagnosis of autism spectrum disorder based on complex network features. Comput Methods Programs Biomed 177:277–283. https://doi.org/10.1016/j.cmpb.2019.06.006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Moattar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedinzadeh Torghabeh, F., Modaresnia, Y. & Moattar, M.H. Hybrid deep transfer learning-based early diagnosis of autism spectrum disorder using scalogram representation of electroencephalography signals. Med Biol Eng Comput 62, 495–503 (2024). https://doi.org/10.1007/s11517-023-02959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02959-z

Keywords

Navigation