Skip to main content
Log in

Retinal vessel segmentation method based on RSP-SA Unet network

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Segmenting retinal vessels plays a significant role in the diagnosis of fundus disorders. However, there are two problems in the retinal vessel segmentation methods. First, fine-grained features of fine blood vessels are difficult to be extracted. Second, it is easy to lose track of the details of blood vessel edges. To solve the problems above, the Residual SimAM Pyramid-Spatial Attention Unet (RSP-SA Unet) is proposed, in which the encoding, decoding, and upsampling layers of the Unet are mainly improved. Firstly, the RSP structure proposed in this paper approximates a residual structure combined with SimAM and Pyramid Segmentation Attention (PSA), which is applied to the encoding and decoding parts to extract multi-scale spatial information and important features across dimensions at a finer level. Secondly, the spatial attention (SA) is used in the upsampling layer to perform multi-attention mapping on the input feature map, which could enhance the segmentation effect of small blood vessels with low contrast. Finally, the RSP-SA Unet is verified on the CHASE_DB1, DRIVE, and STARE datasets, and the segmentation accuracy (ACC) of the RSP-SA Unet could reach 0.9763, 0.9704, and 0.9724, respectively. Area under the ROC curve (AUC) could reach 0.9896, 0.9858, and 0.9906, respectively. The RSP-SA Unet overall performance is better than the comparison methods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang H, Xu G, Pan X et al (2022) Attention-inception-based U-Net for retinal vessel segmentation with advanced residual [J]. Comput Electr Eng 98:107670

    Article  Google Scholar 

  2. Zana F, Klein JC (1999) A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform [J]. IEEE Trans Med Imaging 18(5):419–428

    Article  CAS  PubMed  Google Scholar 

  3. Sinthanayothin C (1999) Automated localization of the optic disc, fovea, and retinal blood vessels from digital colour fundus images [J]. Br J Ophthalmal 83:231–238

    Google Scholar 

  4. Nardini JT, Pugh CWJ, Byrne HM (2023) Statistical and topological summaries aid disease detection for segmented retinal vascular images[J]. Microcirculation 30(4):e12799

  5. Lisha LB, Helen Sulochana C (2023) Highly accurate blood vessel segmentation using texture‐based modified K‐means clustering with deep learning model[J]. Concurr Comput: Pract Exp 35(7):e7590

  6. Häner NU, Dysli C, Munk MR (2023) Imaging in retinal vascular disease: A review[J]. Clin Exp Ophthalmol 51(3):217–228

  7. Shen Y, Li J, Zhu W et al (2023) Graph attention U-Net for retinal layer surface detection and choroid neovascularization segmentation in OCT images[J]. IEEE Transactions on Medical Imaging

  8. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 234–241

  9. Mookiah MRK, Hogg S, MacGillivray TJ et al (2021) A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification [J]. Med Image Anal 68:101905

    Article  PubMed  Google Scholar 

  10. Zhang Y, Fang J, Chen Y et al (2022) Edge-aware U-net with gated convolution for retinal vessel segmentation [J]. Biomed Signal Process Control 73:103472

    Article  Google Scholar 

  11. Liu R, Wang T, Zhang X et al (2023) DA-Res2UNet: explainable blood vessel segmentation from fundus images [J]. Alex Eng J 68:539–549

    Article  Google Scholar 

  12. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, et al (2018) Unet++: A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer International Publishing, 3–11

  13. Zhou Y, Yu H, Shi H (2021) Study group learning: Improving retinal vessel segmentation trained with noisy labels[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24. Springer International Publishing, 57–67

  14. Chen J, Lu Y, Yu Q, et al (2021) Transunet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306

  15. Yang L, Wang H, Zeng Q et al (2021) A hybrid deep segmentation network for fundus vessels via deep-learning framework [J]. Neurocomputing 448:168–178

    Article  Google Scholar 

  16. Ma D, Lu D, Chen S et al (2021) LF-UNet–a novel anatomical-aware dual-branch cascaded deep neural network for segmentation of retinal layers and fluid from optical coherence tomography images [J]. Comput Med Imaging Graph 94:101988

    Article  PubMed  Google Scholar 

  17. Li H, Fang J, Liu S et al (2019) Cr-unet: a composite network for ovary and follicle segmentation in ultrasound images [J]. IEEE J Biomed Health Inform 24(4):974–983

    Article  PubMed  Google Scholar 

  18. Boudegga H, Elloumi Y, Akil M et al (2021) Fast and efficient retinal blood vessel segmentation method based on deep learning network [J]. Comput Med Imaging Graph 90:101902

    Article  PubMed  Google Scholar 

  19. Chen D, Yang W, Wang L et al (2022) PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation [J]. PLoS ONE 17(1):e0262689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Shen J, Yang L et al (2023) ResDO-UNet: a deep residual network for accurate retinal vessel segmentation from fundus images [J]. Biomed Signal Process Control 79:104087

    Article  Google Scholar 

  21. Du H, Zhang X, Song G et al (2023) Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method [J]. Comput Biol Med 153:106416

    Article  PubMed  Google Scholar 

  22. Sun K, Chen Y, Chao Y et al (2023) A retinal vessel segmentation method based improved U-Net model [J]. Biomed Signal Process Control 82:104574

    Article  Google Scholar 

  23. Li J, Gao G, Liu Y et al (2023) MAGF-Net: a multiscale attention-guided fusion network for retinal vessel segmentation [J]. Measurement 206:112316

    Article  Google Scholar 

  24. Yang L, Zhang RY, Li L, et al (2021) Simam: A simple, parameter-free attention module for convolutional neural networks[C]//International conference on machine learning. PMLR 11863–11874

  25. Guo C, Szemenyei M, Yi Y, et al (2021) Sa-unet: Spatial attention u-net for retinal vessel segmentation[C]//2020 25th international conference on pattern recognition (ICPR). IEEE, 1236–1242

  26. Alom MZ, Hasan M, Yakopcic C, et al (2018) Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation[J]. arXiv preprint arXiv:1802.06955

  27. Guo S, Wang K, Kang H et al (2019) BTS-DSN: deeply supervised neural network with short connections for retinal vessel segmentation [J]. Int J Med Informatics 126:105–113

    Article  Google Scholar 

  28. Wang B, Qiu S, He H (2019) Dual encoding u-net for retinal vessel segmentation[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22. Springer International Publishing, 84–92

  29. Jin Q, Meng Z, Pham TD et al (2019) DUNet: a deformable network for retinal vessel segmentation [J]. Knowl-Based Syst 178:149–162

    Article  Google Scholar 

  30. Laibacher T, Weyde T, Jalali S (2019) M2u-net: Effective and efficient retinal vessel segmentation for real-world applications[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 0-0

  31. Wang D, Haytham A, Pottenburgh J et al (2020) Hard attention net for automatic retinal vessel segmentation [J]. IEEE J Biomed Health Inform 24(12):3384–3396

    Article  PubMed  Google Scholar 

  32. Zhuang J (2018) LadderNet: Multi-path networks based on U-Net for medical image segmentation[J]. arXiv preprint arXiv:1810.07810

  33. Zheng S, Jayasumana S, Romera-Paredes B, et al (2015) Conditional random fields as recurrent neural networks[C]//Proceedings of the IEEE international conference on computer vision. 1529–1537

  34. Hu J, Wang H, Gao S et al (2019) S-unet: a bridge-style u-net framework with a saliency mechanism for retinal vessel segmentation [J]. IEEE Access 7:174167–174177

    Article  Google Scholar 

  35. Wang N, Li K, Zhang G et al (2023) Improvement of retinal vessel segmentation method based on U-Net [J]. Electronics 12(2):262

    Article  Google Scholar 

  36. Li L, Verma M, Nakashima Y, et al (2020) Iternet: Retinal image segmentation utilizing structural redundancy in vessel networks[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 3656–3665

  37. Takikawa T, Acuna D, Jampani V, et al (2019) Gated-scnn: Gated shape cnns for semantic segmentation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 5229–5238

  38. Zhang J, Zhang Y, Xu X. (2021) Pyramid u-net for retinal vessel segmentation [C]ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE: 1125–1129.

  39. Xu GX, Ren CX (2023) SPNet: a novel deep neural network for retinal vessel segmentation based on shared decoder and pyramid-like loss [J]. Neurocomputing 523:199–212

    Article  Google Scholar 

  40. Wei S, Sun X, Zhao H, et al. (2021) RSAN: residual subtraction and attention network for single image super-resolution [C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE: 1–6.

  41. Oliveira A, Pereira S, Silva CA (2018) Retinal vessel segmentation based on fully convolutional neural networks [J]. Expert Syst Appl 112:229–242

    Article  Google Scholar 

  42. Maninis KK, Pont-Tuset J, Arbeláez P, et al. (2016) Deep retinal image understanding [C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer International Publishing. 140-148

  43. Tong H, Fang Z, Wei Z et al (2021) SAT-Net: a side attention network for retinal image segmentation [J]. Appl Intell 51(7):5146–5156

    Article  Google Scholar 

  44. Ren K, Chang L, Wan M et al (2022) An improved U-net based retinal vessel image segmentation method [J]. Heliyon 8(10):e11187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li J, Zhang T, Zhao Y, et al. (2022) MC-UNet: multimodule concatenation based on U-shape network for retinal blood vessels segmentation [J]. Computational Intelligence and Neuroscience. 2022

  46. Guo C, Szemenyei M, Hu Y, et al. (2021) Channel attention residual u-net for retinal vessel segmentation [C]//ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE: 1185–1189.

  47. Alom MZ, Yakopcic C, Hasan M et al (2019) Recurrent residual U-Net for medical image segmentation [J]. Journal of Medical Imaging 6(1):014006–014006

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang C, Zhao Z, Ren Q et al (2019) Dense U-net based on patch-based learning for retinal vessel segmentation [J]. Entropy 21(2):168

    Article  PubMed  PubMed Central  Google Scholar 

  49. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Article  PubMed  Google Scholar 

  50. Khan TM, Alhussein M, Aurangzeb K et al (2020) Residual connection-based encoder decoder network (RCED-Net) for retinal vessel segmentation [J]. IEEE Access 8:131257–131272

    Article  Google Scholar 

  51. Guo C, Szemenyei M, Yi Y, et al. (2021) Sa-unet: spatial attention u-net for retinal vessel segmentation [C]//2020 25th international conference on pattern recognition (ICPR). IEEE: 1236–1242.

  52. Sathananthavathi V, Indumathi G (2021) Encoder enhanced atrous (EEA) Unet architecture for retinal blood vessel segmentation [J]. Cogn Syst Res 67:84–95

    Article  Google Scholar 

  53. Lu J, Xu Y, Chen M et al (2018) A coarse-to-fine fully convolutional neural network for fundus vessel segmentation [J]. Symmetry 10(11):607

    Article  Google Scholar 

  54. Wu Y, Xia Y, Song Y et al (2020) NFN+: a novel network followed network for retinal vessel segmentation [J]. Neural Netw 126:153–162

    Article  PubMed  Google Scholar 

  55. Li X, Jiang Y, Li M et al (2020) Lightweight attention convolutional neural network for retinal vessel image segmentation [J]. IEEE Trans Industr Inf 17(3):1958–1967

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support from the National Natural Science Foundation of China under Grant No. 62205091, the Postdoctoral Science Foundation of China under Grant No. 2022M710983, the Heilongjiang Provincial Postdoctoral Foundation Grant No. LBH-Z22201, and the Fundamental Research Foundation for Universities of Heilongjiang Province under Grant No. 2022-KYYWF-0121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wu.

Ethics declarations

Ethical approval

Not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Chen, Y., Dong, F. et al. Retinal vessel segmentation method based on RSP-SA Unet network. Med Biol Eng Comput 62, 605–620 (2024). https://doi.org/10.1007/s11517-023-02960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02960-6

Keywords

Navigation