Skip to main content

Advertisement

Log in

EEGNet-based multi-source domain filter for BCI transfer learning

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract   

Deep learning has great potential on decoding EEG in brain-computer interface. While common deep learning algorithms cannot directly train models with data from multiple individuals because of the inter-individual differences in EEG. Collecting enough data for each subject to satisfy the training of deep learning would result in an increase in training cost. This study proposes a novel transfer learning, EEGNet-based multi-source domain filter for transfer learning (EEGNet-MDFTL), to reduce the amount of training data and improve the performance of BCI. The EEGNet-MDFTL uses bagging ensemble learning to learn domain-invariant features from the multi-source domain and utilizes model loss value to filter the multi-source domain. Compared with baseline methods, the accuracy of the EEGNet-MDFTL reaches 91.96%, higher than two state-of-the-art methods, which demonstrates source domain filter can select similar source domains to improve the accuracy of the model, and remains a high level even when the data amount is reduced to 1/8, proving that ensemble learning learns enough domain invariant features from the multi-source domain to make the model insensitive to data amount. The proposed EEGNet-MDFTL is effective in improving the decoding performance with a small amount of data, which is helpful to save the BCI training cost.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References  

  1. Allison BZ, Kübler A, Jin J (2020) 30+ years of P300 brain–computer interfaces. Psychophysiology 57(7):e13569

    Article  PubMed  Google Scholar 

  2. Li W, Li M, Zhou H et al (2018) A dual stimuli approach combined with convolutional neural network to improve information transfer rate of event-related potential-based brain-computer interface. Int J Neural Syst 28(10):1850034

    Article  PubMed  Google Scholar 

  3. Zhang R, Wang Q, Li K et al (2017) A BCI-based environmental control system for patients with severe spinal cord injuries. IEEE Trans Biomed Eng 64(8):1959–1971

    Article  PubMed  Google Scholar 

  4. Duan F, Lin D, Li W et al (2015) Design of a multimodal EEG-based hybrid BCI system with visual servo module. IEEE Trans Auton Ment Dev 7(4):332–341

    Article  Google Scholar 

  5. Bian Z, Zhang X (2000) Pattern recognition. Tsinghua University Press, China

    Google Scholar 

  6. Xu D, Wang Q (2021) Noninvasive human-prosthesis interfaces for locomotion intent recognition: a review. Cyborg Bionic Syst 2021:9863761

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dos Santos EM, San-Martin R, Fraga FJ (2023) Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers. Med Biol Eng Comput 61(3):835–845. https://doi.org/10.1007/s11517-023-02769-3

    Article  PubMed  Google Scholar 

  8. Alkan A, Akben SB (2011) Use of k-means clustering in migraine detection by using EEG records under flash stimulation. Int J Phys Sci 6(4):641–650

    Google Scholar 

  9. Sunnetci KM, Alkan A (2022) Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images. Exp Syst Appl 216:119430. https://doi.org/10.1016/j.eswa.2022.119430

  10. Sunnetci KM, Kaba E, Celiker FB et al (2023) Deep network-based comprehensive parotid gland tumor detection. Acad Radiol. https://doi.org/10.1016/j.acra.2023.04.028

  11. Li M, Han J, Yang J (2021) Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN. Med Biol Eng Compu 59(10):2037–2050

    Article  Google Scholar 

  12. Borhade R, Nagmode MS (2020) Modified atom search optimization-based deep recurrent neural network for epileptic seizure prediction using electroencephalogram signals. Biocybernetics Biomed Eng 40(4):1638–1653

    Article  Google Scholar 

  13. She Q, Zou J, Luo Z et al (2020) Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine. Med Biol Eng Compu 58:2119–2130

    Article  Google Scholar 

  14. Mishuhina V, Jiang X (2018) Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process Lett 25(6):783–787

    Article  ADS  Google Scholar 

  15. Abibullaev B, Zollanvari A (2021) A systematic deep learning model selection for P300-based brain–computer interfaces. IEEE Trans Syst Man Cybernet: Syst 52(5):2744–2756

    Article  Google Scholar 

  16. Amin SU, Alsulaiman M, Muhammad G et al (2019) Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur Gener Comput Syst 101:542–554

    Article  Google Scholar 

  17. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  18. Kindermans PJ, Tangermann M, Müller KR et al (2014) Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller. J Neural Eng 11(3):035005

    Article  PubMed  Google Scholar 

  19. Fahimi F, Zhang Z, Goh WB et al (2019) Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. J Neural Eng 16(2):026007

    Article  PubMed  Google Scholar 

  20. Zhang D, Yao L, Zhang X et al (2018) Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface. Proc AAAI Conf Artif Intell 32:1

    MathSciNet  Google Scholar 

  21. Jin J, Li S, Daly I et al (2020) The study of generic model set for reducing calibration time in P300-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 28(1):3–12

    Article  PubMed  Google Scholar 

  22. Raza H, Cecotti H, Li Y et al (2016) Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface. Soft Comput 20:3085–3096

    Article  Google Scholar 

  23. Li M, Lin F, Xu G (2020) A TrAdaBoost method for detecting multiple subjects’ N200 and P300 potentials based on cross-validation and an adaptive threshold. Int J Neural Syst 30(3):2050009

    Article  PubMed  Google Scholar 

  24. Roy AM (2022) Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface. Eng Appl Artif Intell 116:105347

    Article  Google Scholar 

  25. Kang H, Nam Y, Choi S (2009) Composite common spatial pattern for subject-to-subject transfer. IEEE Signal process Lett 16(8):683–686

    Article  ADS  Google Scholar 

  26. Lees S (2018) A review of rapid serial visual presentation-based brain–computer interfaces. J Neural Eng 15(2):1–24

    Article  Google Scholar 

  27. Azab AM, Mihaylova L, Ang KK et al (2019) Weighted transfer learning for improving motor imagery-based brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 27(7):1352–1359

    Article  PubMed  Google Scholar 

  28. He H, Wu D (2020) Transfer learning for brain–computer interfaces: a Euclidean space data alignment approach. IEEE Trans Biomed Eng 67(2):399–410

    Article  PubMed  ADS  Google Scholar 

  29. Zhao X, Zhao J, Liu C et al (2020) Deep neural network with joint distribution matching for cross-subject motor imagery brain-computer interfaces. Biomed Res Int 2020:1–15

    Google Scholar 

  30. Lawhern VJ, Solon AJ, Waytowich NR et al (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):1–17

    Article  Google Scholar 

  31. Sun B, Zhao X, Zhang H et al (2020) EEG motor imagery classification with sparse spectrotemporal decomposition and deep learning. IEEE Trans Automat Sci Eng 18(2):541–551

    Article  Google Scholar 

  32. Schirrmeister R, Springenberg J, Fiederer L et al (2017) Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 38(11):5391–5420

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ni Z, Xu J, Wu Y et al (2022) Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training. IEEE Trans Neural Syst Rehabil Eng 30:369–379

    Article  PubMed  Google Scholar 

  34. Kumar S, Reddy T, Arora V et al (2020) Formulating divergence framework for multiclass motor imagery EEG brain computer interface. In: Proc. IEEE Int Conf Acoustics Speech Signal Process. IEEE, pp 1344–1348. https://doi.org/10.1109/icassp40776.2020.9053168

  35. Lotte F, Bougrain L, Cichocki A et al (2018) A review of classification algorithms for EEG-based braincomputer interfaces: a 10 year update. J Neural Eng 15(3):031005

    Article  CAS  PubMed  Google Scholar 

  36. Kalaganis F, Laskaris N, Chatzilari E et al (2020) A Riemannian geometry approach to reduced and discriminative covariance estimation in brain computer interfaces. IEEE Trans Biomed Eng 67(1):245–255

    Article  PubMed  Google Scholar 

  37. Hussein R, Palangi H, Ward R et al (2019) Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin Neuriophysiol 130:25–37

    Article  Google Scholar 

  38. Li F, Xia Y, Wang F et al (2020) Transfer learning algorithm of P300-EEG signal based on XDAWN spatial filter and Riemannian geometry classifier. Appl Sci 10(5):1804

    Article  CAS  Google Scholar 

  39. Kilani S, Aghili SN, Hulea M (2023) Enhancing P300-based brain-computer interfaces with hybrid transfer learning: a data alignment and fine-tuning approach. Appl Sci 13(10):6283

    Article  CAS  Google Scholar 

  40. Huang Z, Guo J, Zheng W et al (2022) A calibration-free approach to implementing P300-based brain–computer interface. Cogn Comput 14(2):887–899

    Article  Google Scholar 

  41. Wu Z, She Q, Hou Z et al (2023) Multi-source online transfer algorithm based on source domain selection for EEG classification. Math Biosci Eng 20(3):4560–4573

    Article  PubMed  Google Scholar 

  42. Long M, Wang J, Ding G et al (2013) Transfer feature learning with joint distribution adaptation. In: Proceedings of the IEEE international conference on computer vision. IEEE, pp 2200–2207. https://doi.org/10.1109/iccv.2013.274

Download references

Funding

This work was funded by the Natural Science Foundation of Hebei Province (F2021202003), the Technology Nova of Hebei University of Technology (JBKYXX2007), the State Key Laboratory of Reliability and Intelligence of Electrical Equipment (EERI_OY2020004, EERI_OY202000), the National Natural Science Foundation of China (51977060), and the Key Research and Development Foundation of Hebei (19277752D, 21372002D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Li, J., Song, Z. et al. EEGNet-based multi-source domain filter for BCI transfer learning. Med Biol Eng Comput 62, 675–686 (2024). https://doi.org/10.1007/s11517-023-02967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02967-z

Keywords

Navigation