Skip to main content
Log in

OVME-REG: Harris hawks optimization algorithm based optimized variational mode extraction for eye blink artifact removal from EEG signal

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The electroencephalogram (EEG) recordings from the human brain are useful for detecting various brain syndromes. These recordings are typically contaminated by high amplitude eye blink artifacts, which leads to deliberate misinterpretation of the EEG signal. Recently, variational mode extraction (VME) has been used to detect eye blink artifacts. But, the VME performance is impacted by the balancing parameter and center frequency selection. Therefore, this research uses two metaheuristic algorithms, particle swarm optimization and Harris hawks optimization, to determine the optimal set of the VME parameters. In the proposed method, the optimized VME (OVME) extracts the desired mode to locate the eye blink artifactual intervals. Then, the regression analysis (REG) filters the identified artifactual intervals from short EEG data segments. The significance of the proposed OVME-REG algorithm is that it is adequate for determining the optimum values of the VME algorithm. The analysis is carried out on the CHB-MIT Scalp EEG, BCI Competition, and EEG motor movement/imagery datasets. The proposed OVME-REG method provides an improved performance for suppressing single and repeated eye blink artifacts as compared to the current approaches in terms of (a) high correlation coefficient (93.08%, 87.3%, 82.17%), respectively, (b) low value of RRMSE (0.379, 0.506, 0.502), respectively, (c) high SSIM (0.892, 0.842, 0.694), and (d) low computation time and better preservation of the EEG data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shariat A, Zarei A, Karvigh SA, Asl BM (2021) Automatic detection of epileptic seizures using Riemannian geometry from scalp EEG recordings. Med Biol Eng Compu 59:1431–1445

    Article  Google Scholar 

  2. Cejnek M, Vysata O, Valis M, Bukovsky I (2021) Novelty detection-based approach for Alzheimer’s disease and mild cognitive impairment diagnosis from EEG. Med Biol Eng Compu 59:2287–2296

    Article  Google Scholar 

  3. Corralejo R, Nicolas-Alonso LF, Álvarez D, Hornero R (2014) A P300-based brain–computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Compu 52:861–872

    Article  Google Scholar 

  4. Ranjan R, Sahana BC, Bhandari AK (2021) Ocular artifact elimination from electroencephalography signals: a systematic review. Biocybernetics Biomed Eng 41(3):960–996

    Article  Google Scholar 

  5. He P, Wilson G, Russell C (2004) Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Compu 42:407–412

    Article  CAS  Google Scholar 

  6. Uriguen JA, Garcia-Zapirain B (2015) EEG artifact removal—state-of-the-art and guidelines. J Neural Eng 2(3):031001

    Article  Google Scholar 

  7. Shoker L, Sanei S, Wang W, Chambers JA (2005) Removal of eye blinking artifact from the electro-encephalogram, incorporating a new constrained blind source separation algorithm. Med Biol Eng Compu 43:290–295

    Article  CAS  Google Scholar 

  8. Mannan MMN, Kim S, Jeong MY, Kamran MA (2016) Hybrid EEG—eye tracker: automatic identification and removal of eye movement and blink artifacts from electroencephalographic signal. Sensors 16(2):241

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Poorna SS, Arsha VV, Aparna PT, Gopal P, Nair GJ (2018) Drowsiness detection for safe driving using PCA EEG signals. In: Progress in Computing, Analytics and Networking: Proceedings of ICCAN 2017. Springer Singapore, pp 419–428

  10. Khatun S, Mahajan R, Morshed BI (2016) Comparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG data. IEEE J Transl Eng Health Med 4:1–8

    Article  Google Scholar 

  11. Shahbakhti M, Maugeon M, Beiramvand M, Marozas V (2019) Low complexity automatic stationary wavelet transform for elimination of eye blinks from EEG. Brain Sci 9(12):352

    Article  PubMed  PubMed Central  Google Scholar 

  12. Phadikar S, Sinha N, Ghosh R (2020) Automatic eyeblink artifact removal from EEG signal using wavelet transform with heuristically optimized threshold. IEEE J Biomed Health Inform 25(2):475–484

    Article  Google Scholar 

  13. Patel R, Janawadkar MP, Sengottuvel S, Gireesan K, Radhakrishnan TS (2016) Suppression of eye-blink associated artifact using single channel EEG data by combining cross-correlation with empirical mode decomposition. IEEE Sens J 16(18):6947–6954

    Article  ADS  Google Scholar 

  14. Patel R, Gireesan K, Sengottuvel S, Janawadkar MP, Radhakrishnan TS (2017) Common methodology for cardiac and ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. J Med Biol Eng 37(2):201–208

    Article  PubMed  PubMed Central  Google Scholar 

  15. Çınar S (2021) Design of an automatic hybrid system for removal of eye-blink artifacts from EEG recordings. Biomed Signal Process Control 67:102543

    Article  Google Scholar 

  16. Miao M, Hu W, Xu B, Zhang J, Rodrigues JJ, de Albuquerque VH (2021) Automated CCA-MWF algorithm for unsupervised identification and removal of EOG artifacts from EEG. IEEE J Biomed Health Inform 26(8):3607–3617

  17. Saini M, Satija U (2019) An effective and robust framework for ocular artifact removal from single-channel EEG signal based on variational mode decomposition. IEEE Sens J 20(1):369–376

    Article  ADS  Google Scholar 

  18. Dora C, Biswal PK (2020) An improved algorithm for efficient ocular artifact suppression from frontal EEG electrodes using VMD. Biocybernetics Biomed Eng 40(1):148–161

    Article  Google Scholar 

  19. Sharma S, Satija U (2022) Automated ocular artifacts removal framework based on adaptive chirp mode decomposition. IEEE Sens J 22(6):5806–5814

    Article  ADS  Google Scholar 

  20. Maddirala AK, Veluvol KC (2021) Eye-blink artifact removal from single channel EEG with k-means and SSA. Sci Rep 11:11043

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maddirala AK, Veluvolu KC (2022) SSA with CWT and k-means for eye-blink artifact removal from single-channel EEG signals. Sensors 22(3):931

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Juyal R, Muthusamy H, Kumar N (2022) SNOAR: a new regression approach for the removal of ocular artifact from multi-channel electroencephalogram signals. Med Biol Eng Compu 60(12):3567–3583

    Article  Google Scholar 

  23. Jurczak M, Kołodziej M, Majkowski A (2022) Implementation of a convolutional neural network for eye blink artifacts removal from the electroencephalography signal. Front Neurosci 16:782367

  24. Yin J, Liu A, Li C, Qian R, Chen X (2023) A GAN guided parallel CNN and transformer network for EEG denoising. IEEE J Biomed Health Inform 1–12. https://doi.org/10.1109/JBHI.2023.3277596

  25. Stalin S, Roy V, Shukla PK, Zaguia A, Khan MM, Shukla PK, Jain A (2021) A machine learning-based big EEG data artifact detection and wavelet-based removal: an empirical approach. Math Probl Eng 2021:1–11. https://doi.org/10.1155/2021/2942808

  26. Sahoo SK, Mohapatra SK (2022) Recognition of ocular artifacts in EEG signal through a hybrid optimized scheme. BioMed Res Int 2022:1–25. https://doi.org/10.1155/2022/4875399

  27. Prasad DS, Chanamallu SR, Prasad KS (2022) Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal. Multimedia Tools Appl 7:1–39

    Google Scholar 

  28. Klein A, Skrandies W (2013) A reliable statistical method to detect eyeblink-artefacts from electroencephalogram data only. Brain Topogr 26(4):558–568

    Article  PubMed  Google Scholar 

  29. Valderrama JT, De La Torre A, Van Dun B (2018) An automatic algorithm for blink-artifact suppression based on iterative template matching: application to single channel recording of cortical auditory evoked potentials. J Neural Eng 15(1):016008

    Article  PubMed  Google Scholar 

  30. Nazari M, Sakhaei SM (2017) Variational mode extraction: a new efficient method to derive respiratory signals from ECG. IEEE J Biomed Health Inform 22(4):1059–1067

    Article  PubMed  Google Scholar 

  31. Shahbakhti M, Beiramvand M, Nazari M, Broniec-Wojcik A, Augustyniak P, Rodrigues AS, Wierzchon M, Marozas V (2021) VME-DWT: an efficient algorithm for detection and elimination of eye blink from short segments of single EEG channel. IEEE Trans Neural Syst Rehabil Eng 29:408–417

    Article  PubMed  Google Scholar 

  32. Shahbakhti M, Beiramvand M, Rejer I, Augustyniak P, Broniec-Wójcik A, Wierzchon M, Marozas V (2021) Simultaneous eye blink characterization and elimination from low-channel prefrontal EEG signals enhances driver drowsiness detection. IEEE J Biomed Health Inform 26(3):1001–1012

    Article  Google Scholar 

  33. Wang M, Wang J, Cui X, Wang T, Jiang T, Gao F, Cao J (2022) Multidimensional feature optimization based eye blink detection under epileptiform discharges. IEEE Trans Neural Syst Rehabil Eng 30:905–914

    Article  PubMed  Google Scholar 

  34. Kennedy J (2011) Particle swarm optimization in Encyclopedia of the Sciences of Learning. Springer, Heidelberg, Germany, pp 760–766

    Google Scholar 

  35. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  36. Bulling A, Ward JA, Gellersen H, Troster G (2010) Eye movement analysis for activity recognition using electrooculography. IEEE Trans Pattern Anal Mach Intell 33(4):741–753

    Article  Google Scholar 

  37. Shoeb A (2009) Application of machine learning to epileptic seizure onset detection and treatment. Ph.D. Thesis, Massachusetts Institute of Technology. https://doi.org/10.13026/C2K01R

  38. Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007) The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–550

    Article  PubMed  Google Scholar 

  39. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043

    Article  PubMed  Google Scholar 

  40. Cassidy JM, Wodeyar A, Wu J, Kaur K, Masuda AK, Srinivasan R, Cramer SC (2020) Low-frequency oscillations are a biomarker of injury and recovery after stroke. Stroke 51(5):1442–1450

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. M. N. S. Swamy, Concordia University, Canada, for his constructive suggestions to improve the presentation of the manuscript. Also, the authors are thankful to the anonymous reviewers for their insightful suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BS: investigation, methodology, software, validation, visualization, writing — original draft, writing — review and editing.

MKH: investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing — original draft, writing — review and editing.

Corresponding author

Correspondence to Malaya Kumar Hota.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silpa, B., Hota, M.K. OVME-REG: Harris hawks optimization algorithm based optimized variational mode extraction for eye blink artifact removal from EEG signal. Med Biol Eng Comput 62, 955–972 (2024). https://doi.org/10.1007/s11517-023-02976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02976-y

Keywords