Skip to main content

Advertisement

Log in

Study on the poroelastic behaviors of the defected osteochondral unit

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Osteoarthritis has become a major disease threatening human health. The mechanism of injury under fluid involvement can be studied by finite element method. However, most models only model the articular cartilage to study the subchondral bone structure, which is too simplistic. In this study, a complete osteochondral unit was modeled and provided with a poroelastic material, and as osteoarthritis develops and the size, thickness, and shape of the osteochondral unit defect varies, the fluid flow behavior is altered, which may have functional consequences that feed back into the progression of the injury. The results of the study showed that interstitial fluid pressure and velocity decreased in defective osteochondral units. This trend was exacerbated as the size and thickness of the defect in the osteochondral unit increased. When the defect reached the trabeculae, pressure around the cartilage defect in the osteochondral unit was greatest, flow velocity in the subchondral cortical bone was greatest, and pressure and flow velocity around the trabecular defect were lowest. As osteoarthritis develops, the osteochondral unit becomes more permeable, and the pressure of the interstitial fluid decreases while the flow rate increases, resulting in severe nutrient loss. This may be the fluid flow mechanism behind osteochondral defects and osteoarthritis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hubert J, Beil FT, Rolvien T, Butscheidt S, Hischke S, Puschel K, Frosch S, Mussawy H, Ries C, Hawellek T (2020) Cartilage calcification is associated with histological degeneration of the knee joint: a highly prevalent, age-independent systemic process. Osteoarthritis Cartilage 28:1351–1361

    Article  CAS  PubMed  Google Scholar 

  2. Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49

    Article  CAS  PubMed  Google Scholar 

  3. Liu H-Y, Duan H-T, Zhang C-Q, Wang W (2017) Study of the mechanical environment of chondrocytes in articular cartilage defects repaired area under cyclic compressive loading. J Healthc Eng 2017:1–10

    Article  Google Scholar 

  4. Manda K, Eriksson A (2014) Modeling of constrained articular cartilage growth in an intact knee with focal knee resurfacing metal implant. Biomech Model Mechanobiol 13:599–613

    Article  PubMed  Google Scholar 

  5. Castaneda S, Roman-Blas JA, Largo R, Herrero-Beaumont G (2012) Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 83:315–323

    Article  CAS  PubMed  Google Scholar 

  6. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237

    Article  CAS  PubMed  Google Scholar 

  7. Holopainen JT, Brama PA, Halmesmaki E, Harjula T, Tuukkanen J, van Weeren PR, Helminen HJ, Hyttinen MM (2008) Changes in subchondral bone mineral density and collagen matrix organization in growing horses. Bone 43:1108–1114

    Article  CAS  PubMed  Google Scholar 

  8. Ansari S, Khorshidi S, Karkhaneh A (2019) Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater 87:41–54

    Article  CAS  PubMed  Google Scholar 

  9. Hislop BD, Heveran CM, June RK (2021) Development and analytical validation of a finite element model of fluid transport through osteochondral tissue. J Biomech 123:110497

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sajjadinia SS, Haghpanahi M, Razi M (2019) Computational simulation of the multiphasic degeneration of the bone-cartilage unit during osteoarthritis via indentation and unconfined compression tests. Proc Inst Mech Eng H 233:871–882

    Article  PubMed  Google Scholar 

  11. Stender ME, Regueiro RA, Ferguson VL (2017) A poroelastic finite element model of the bone-cartilage unit to determine the effects of changes in permeability with osteoarthritis. Comput Methods Biomech Biomed Engin 20:319–331

    Article  PubMed  Google Scholar 

  12. Hunziker EB, Lippuner K, Keel MJ, Shintani N (2015) An educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospects. Osteoarthritis Cartilage 23:334–350

    Article  CAS  PubMed  Google Scholar 

  13. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31:706–721

    Article  CAS  PubMed  Google Scholar 

  14. Orava H, Huang L, Ojanen SP, Makela JTA, Finnila MAJ, Saarakkala S, Herzog W, Korhonen RK, Toyras J, Tanska P (2022) Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses - A finite element study. J Mech Behav Biomed Mater 128:105129

    Article  CAS  PubMed  Google Scholar 

  15. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433

    Article  PubMed  Google Scholar 

  16. Liao J, Tian T, Shi S, Xie X, Ma Q, Li G, Lin Y (2017) The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res 5:17018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nerem RM, Alexander RW, Chappell DC, Medford RM, Varner SE, Robert Taylor W (1998) The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316:169–175

    CAS  PubMed  Google Scholar 

  18. Sun Y, Wang N, Yu J, Yan Y, Dong H, Wu X, Zhang M, Wang Y, Li P, Wei X, Chen W (2021) Study on the poroelastic behaviors of the defected articular cartilage. Comput Methods Biomech Biomed Engin 25:1288–1300

    Article  PubMed  Google Scholar 

  19. Alford JW, Cole BJ (2005) Cartilage restoration, part 2: techniques, outcomes, and future directions. Am J Sports Med 33:443–460

    Article  PubMed  Google Scholar 

  20. Lin Y, Qin J, Zhao H, Xia C (2020) Construction and analysis of finite element model of defected articular cartilage. Saudi J Biol Sci 27:556–560

    Article  PubMed  Google Scholar 

  21. Men Y-t, Li X-m, Yang N, Wang X, Zhang C-q (2018) Analysis of the mechanical effects of defect shape on damage evolution of articular cartilage under rolling load. Mater Sci Eng C 92:407–415

    Article  CAS  Google Scholar 

  22. Sah RL, Yang AS, Chen AC, Hant JJ, Halili RB, Yoshioka M, Amiel D, Coutts RD (1997) Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J Orthop Res 15:197–203

    Article  CAS  PubMed  Google Scholar 

  23. Pragnere S, Boulocher C, Pollet O, Bosser C, Levillain A, Cruel M, Hoc T (2018) Mechanical alterations of the bone-cartilage unit in a rabbit model of early osteoarthrosis. J Mech Behav Biomed Mater 83:1–8

    Article  PubMed  Google Scholar 

  24. Kabir W, Di Bella C, Choong PFM, O’Connell CD (2021) Assessment of native human articular cartilage: a biomechanical protocol. Cartilage 13:427S-437S

    Article  PubMed  Google Scholar 

  25. Ebacher V, Tang C, McKay H, Oxland TR, Guy P, Wang R (2007) Strain redistribution and cracking behavior of human bone during bending. Bone 40:1265–1275

    Article  PubMed  Google Scholar 

  26. Hwang J, Bae WC, Shieu W, Lewis CW, Bugbee WD, Sah RL (2008) Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum 58:3831–3842

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Regional Joint Key Funding Program of the National Natural Science Foundation of China (Grant No. U21A20353), the National Natural Science Foundation of China (Grant Nos. 12272250, 11972242, and 82172503), China Postdoctoral Science Foundation (Grant No. 2020M680913), Shanxi Province Returned Overseas Foundation (Grant No. 2022–081), the Shanxi Province Basic Research Program (Grant No. 202203021212254), and the Graduate Innovation Program of Shanxi Province (Grant No. 2023–125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanru Xue, Xiaogang Wu or Weiyi Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Lou, X., Fan, X. et al. Study on the poroelastic behaviors of the defected osteochondral unit. Med Biol Eng Comput 62, 1139–1152 (2024). https://doi.org/10.1007/s11517-023-02996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02996-8

Keywords

Navigation