Skip to main content

Advertisement

Log in

A dynamic spatiotemporal model for fall warning and protection

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Early detection of falls is important for reducing fall injuries. However, existing fall detection strategies mostly focus on reducing impact injuries rather than avoiding falls. This study proposed the concept of identifying “Imbalance Point” to warn the body imbalance, allowing sufficient time to recover balance. And if falling cannot be avoided, an impact sign is released by detecting the “Fall Point” prior to the impact. To achieve this goal, motion prediction model and balance recovery model are integrated into a spatiotemporal framework to analyze dynamic and kinematic features of body motion. Eight healthy young volunteers participated in three sets of experiment: Normal trial, Recovery trial and Fall trial. The body motion in the trials was recorded using Microsoft Azure Kinect. The results show that the developed algorithm for Fall Point detection achieved 100% sensitivity and 98.6% specificity, along with an average lead time of 297 ms. Moreover, Imbalance Point was successfully detected in all Fall trials, and the average time interval between Imbalance Point and Fall Point was 315 ms, longer than reported step reaction time for elderly (approximately 270 ms). The experiment results demonstrate that the developed algorithm have great potential for fall warning and protection in the elderly.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1:
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alghwiri AA, Whitney SL (2012) Geriatric physical therapy. Mosby, Saint Louis, p 353

    Google Scholar 

  2. Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention, (in English). Age Ageing 35:37–41

    Article  Google Scholar 

  3. Xu T, Zhou Y, Zhu J (2018) New advances and challenges of fall detection systems: a survey. Appl Sci Basel 8(3):418

    Article  Google Scholar 

  4. Wang Y, Wu K, Ni LM (2016) Wifall: Device-free fall detection by wireless networks. IEEE Trans Mob Comput 16(2):581–594

    Article  Google Scholar 

  5. Tzeng H-W, Chen M-Y, Chen J-Y (2010) Design of fall detection system with floor pressure and infrared image. In: 2010 International Conference on System Science and Engineering, pp 131–135: IEEE

  6. Makhlouf A, Boudouane I, Saadia N, Cherif AR (2019) Ambient assistance service for fall and heart problem detection. J Ambient Intell Humanized Comput 10(4):1527–1546

    Article  Google Scholar 

  7. Wang J, Zhang ZQ, Li B, Lee S, Sherratt RS (2014) An enhanced fall detection system for elderly person monitoring using consumer home networks. IEEE Trans Consum Electron 60(1):23–29

    Article  Google Scholar 

  8. Dang TN, Le TK, Hong TP, Nguyen V (2021) Fast and accurate fall detection and warning system using image processing technology. In: International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2021, pp 207–210

  9. Saadeh W, Butt SA, Bin Altaf MA (2019) A patient-specific single sensor IoT-based wearable fall prediction and detection system. IEEE Trans Neural Syst Rehabil Eng 27(5):995–1003

    Article  PubMed  Google Scholar 

  10. Al Nahian MJ et al (2021) Towards an accelerometer-based elderly fall detection system using cross-disciplinary time series features. IEEE Access 9:39413–39431

    Article  Google Scholar 

  11. Panahi L, Ghods V (2018) Human fall detection using machine vision techniques on RGB-D images. Biomed Signal Process Control 44:146–153

    Article  Google Scholar 

  12. Min WD, Yao LY, Lin ZR, Liu L (2018) Support vector machine approach to fall recognition based on simplified expression of human skeleton action and fast detection of start key frame using torso angle. IET Comput Vision 12(8):1133–1140

    Article  Google Scholar 

  13. Hu XY, Qu XD (2016) Pre-impact fall detection. Biomed Eng Online 15:61

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yajai A, Rasmequan S (2017) Adaptive directional bounding box from RGB-D information for improving fall detection. J Vis Commun Image Represent 49:257–273

    Article  Google Scholar 

  15. Chen W, Jiang Z, Guo H, Ni XJS (2020) Fall detection based on key points of human-skeleton using openpose. Symmetry 12(5):744

    Article  ADS  Google Scholar 

  16. Tamura T, Yoshimura T, Sekine M, Uchida M, Tanaka O (2009) A wearable airbag to prevent fall injuries. IEEE Trans Inf Technol Biomed 13(6):910–914

    Article  PubMed  Google Scholar 

  17. Ahn S et al (2018) Optimization of a pre-impact fall detection algorithm and development of hip protection airbag system. Sensors Mater 30:1743–1752

    Article  Google Scholar 

  18. Yao M et al (2015) A wearable pre-impact fall early warning and protection system based on MEMS inertial sensor and GPRS communication. In: 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN), pp 1–6: IEEE

  19. Choi W, Wakeling J, Robinovitch S (2015) Kinematic analysis of video-captured falls experienced by older adults in long-term care. J Biomech 48(6):911–920

    Article  CAS  PubMed  Google Scholar 

  20. Vallee P, Tisserand R, Robert T (2015) Possible recovery or unavoidable fall? A model to predict the one step balance recovery threshold and its stepping characteristics. J Biomech 48(14):3905–3911

    Article  PubMed  Google Scholar 

  21. Cyr M-A, Smeesters C (2009) Kinematics of the threshold of balance recovery are not affected by instructions limiting the number of steps in younger adults. Gait Posture 29(4):628–633

    Article  PubMed  Google Scholar 

  22. Smeesters C, Hayes WC, McMahon TA (2001) The threshold trip duration for which recovery is no longer possible is associated with strength and reaction time. J Biomech 34(5):589–595

    Article  CAS  PubMed  Google Scholar 

  23. Xu T, Zhou Y (2018) Elders’ fall detection based on biomechanical features using depth camera. Int J Wavelets Multiresolution Inf Process 16(02):1840005

    Article  Google Scholar 

  24. Lugade V, Lin V, Chou L-S (2011) Center of mass and base of support interaction during gait. Gait Posture 33(3):406–411

    Article  PubMed  Google Scholar 

  25. Hof AL, Gazendam MGJ, Sinke WE (2005) The condition for dynamic stability, (in English). J Biomech 38(1):1–8

    Article  CAS  PubMed  Google Scholar 

  26. Bi QL et al (2017) An automatic camera calibration method based on checkerboard. Traitement Du Signal 34(3–4):209–226

    Article  Google Scholar 

  27. Albert JA, Owolabi V, Gebel A, Brahms CM, Granacher U, Arnrich B (2020) Evaluation of the pose tracking performance of the Azure Kinect and Kinect v2 for gait analysis in comparison with a gold standard: a pilot study. Sensors 20(18):5104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manghisi VM et al (2020) A body tracking-based low-cost solution for monitoring workers’ hygiene best practices during pandemics. Sensors 20(21):6149

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Romeo L, Marani R, Malosio M, Perri AG, D'Orazio T, and Ieee (2021) Performance Analysis of Body Tracking with the Microsoft Azure Kinect. In: 29th Mediterranean Conference on Control and Automation (MED), Puglia, Italy, 2021, pp 572–577

  30. Berg WP, Alessio HM, Mills EM, Tong C (1997) Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 26(4):261–268

    Article  CAS  PubMed  Google Scholar 

  31. Roudsari BS, Ebel BE, Corso PS, Molinari NAM, Koepsell TD (2005) The acute medical care costs of fall-related injuries among the US older adults. Injury-Int J Care Injured 36(11):1316–1322

    Article  Google Scholar 

  32. Roos PE, McGuigan MP, Trewartha G (2010) The role of strategy selection, limb force capacity and limb positioning in successful trip recovery. Clin Biomech 25(9):873–878

    Article  Google Scholar 

  33. King ST, Eveld ME, Martinez A, Zelik KE, Goldfarb M (2019) A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery. J Neuroengineering Rehabil 16:69

    Article  Google Scholar 

  34. Shirota C, Simon AM, Kuiken TA (2014) Trip recovery strategies following perturbations of variable duration. J Biomech 47(11):2679–2684

    Article  PubMed  Google Scholar 

  35. van Dieen JH, Pijnappels M, Bobbert MF (2005) Age-related intrinsic limitations in preventing a trip and regaining balance after a trip. Saf Sci 43(7):437–453

    Article  Google Scholar 

  36. Pijnappels M, Reeves ND, Maganaris CN, Van Dieen JH (2008) Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly. J Electromyogr Kinesiol 18(2):188–196

    Article  PubMed  Google Scholar 

  37. Chen SH, Liu BA, Feng C, Vallespi-Gonzalez C, Wellington C (2021) 3D point cloud processing and learning for autonomous driving: impacting map creation, localization, and perception. IEEE Signal Process Mag 38(1):68–86

    Article  ADS  Google Scholar 

  38. Soomro K, Idrees H, Shah M (2018) Online localization and prediction of actions and interactions. IEEE Trans Pattern Anal Mach Intell 41(2):459–472

    Article  PubMed  Google Scholar 

  39. Ghosh P, Song J, Aksan E, Hilliges O, and Ieee (2017) Learning human motion models for long-term predictions. In: International Conference on 3D Vision (3DV), Qingdao, Canada, 2017, pp 458–466

  40. Jin X, Guo J, Li Z, Wang RH (2020) Motion prediction of human wearing powered exoskeleton. Math Probl Eng 2020:8899880

    Article  Google Scholar 

  41. Xu Z, Wang Y, Long M, Wang J, KLiss M (2018) PredCNN: predictive learning with cascade convolutions. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, pp 2940–2947

  42. Liu XL, Yin JQ, Liu J, Ding PX, Liu J, Liu HP (2021) TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction. IEEE Trans Circuits Syst Video Technol 31(6):2133–2146

    Article  Google Scholar 

  43. Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp 4346–4354

  44. Cheng Y, Zhao W, Liu C, Tomizuka M (2019) Human motion prediction using semi-adaptable neural networks. In: 2019 American Control Conference (ACC), pp 4884–4890: IEEE

  45. Liu RX, Liu CL (2021) Human motion prediction using adaptable recurrent neural networks and inverse kinematics. IEEE Control Syst Lett 5(5):1651–1656

    Article  Google Scholar 

  46. Melzer I, Kurz I, Shahar D, Levi M, Oddsson L (2007) Application of the voluntary step execution test to identify elderly fallers. Age Ageing 36(5):532–537

    Article  CAS  PubMed  Google Scholar 

  47. Tisserand R, Robert T, Chabaud P, Bonnefoy M, Cheze L (2016) Elderly fallers enhance dynamic stability through anticipatory postural adjustments during a choice stepping reaction time. Front Human Neurosci 10:613

    Article  Google Scholar 

  48. Paolo DL (1996) Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters, (in English). J Biomech 29(9):1223–1230

    Article  Google Scholar 

  49. Pavol MJ, Owings TM, Foley KT, Grabiner MD (2001) Mechanisms leading to a fall from an induced trip in healthy older adults. J Gerontol Ser a-Biol Sci Med Sci 56(7):M428–M437

    CAS  Google Scholar 

  50. Pijnappels M, Bobbert MF, van Dieen JH (2004) Contribution of the support limb in control of angular momentum after tripping. J Biomech 37(12):1811–1818

    Article  PubMed  Google Scholar 

  51. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  52. Charfi I, Miteran J, Dubois J, Atri M, Tourki R (2013) Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification. J Electron Imaging 22(4):041106

    Article  ADS  Google Scholar 

  53. Hsiao ET, Robinovitch SN (1999) Biomechanical influences on balance recovery by stepping, (in English). J Biomech 32(10):1099–1106

    Article  CAS  PubMed  Google Scholar 

  54. Li M, Xu G, He B, Ma X, Xie J (2018) Pre-impact fall detection based on a modified zero moment point criterion using data from Kinect sensors. IEEE Sens J 18(13):5522–5531

    Article  ADS  Google Scholar 

  55. Rescio G, Leone A, Siciliano P (2018) Supervised machine learning scheme for electromyography-based pre-fall detection system. Expert Syst Appl 100:95–105

    Article  Google Scholar 

  56. Lee CM, Park J, Park S, Kim CH (2020) Fall-detection algorithm using plantar pressure and acceleration data. Int J Precis Eng Manuf 21(4):725–737

    Article  Google Scholar 

  57. Jung H, Koo B, Kim J, Kim T, Nam Y, Kim Y (2020) Enhanced algorithm for the detection of preimpact fall for wearable airbags. Sensors 20(5):1277

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Yu X, Jang J, Xiong S (2021) A large-scale open motion dataset (KFall) and benchmark algorithms for detecting pre-impact fall of the elderly using wearable inertial sensors. Front Aging Neurosci 13:692865

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Sousa F, Escriba C, Bravo EGA, Brossa V, Fourniols JY, Rossi C (2022) Wearable pre-impact fall detection system based on 3D accelerometer and subject’s height. IEEE Sens J 22(2):1738–1745

    Article  ADS  Google Scholar 

  60. Neptune RR, Vistamehr A (2019) Dynamic balance during human movement: measurement and control mechanisms, (in English). J Biomech Eng Trans Asme 141(7):070801

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2022YFC2009500) and Key Research Project of Zhejiang Lab (2022ND0AC01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zenghui Gu or Gangmin Ning.

Ethics declarations

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki. The study was approved by the ethical review boards of Zhejiang Hospital (2021(108 K)).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The model motion governing equations and the detailed derivation during pre-contact phase and contact phase are given in the appendix.

1.1 Basic settings

$$\left\{ \begin{gathered} \tau_{ankle} = \, k_{ankle} (\pi /2 - \alpha ) \hfill \\ \tau_{knee} = \, - k_{knee} \beta \hfill \\ \tau_{hip} = \, k_{hip} (\alpha + \beta + \gamma - \pi /2) \hfill \\ \tau_{sp} = \tau_{ankle} , \, \tau_{sd} = - \tau_{knee} , \, \tau_{tp} = \tau_{knee} \hfill \\ \tau_{td} = - \tau_{hip} ,\tau_{hp} = \tau_{hip} , \, \tau_{hd} = 0 \hfill \\ F_{sd} = - F_{tp} , \, F_{td} = - F_{hp} , \, F_{hd} = [\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array} ]^{T} \hfill \\ I_{s} = 1/3m_{s} \cdot (0.5l_{s} )^{2} ,I_{t} = 1/3m{}_{t} \cdot (0.5l_{t} )^{2} ,I_{h} = 1/3m_{h} \cdot (0.5l_{h} )^{2} \hfill \\ P_{s} = \left[ {\begin{array}{*{20}c} 0 \\ {l_{s} \cdot \cos (\alpha )} \\ {l_{s} \cdot \sin (\alpha )} \\ \end{array} } \right],P_{t} = \left[ {\begin{array}{*{20}c} 0 \\ {l_{t} \cdot \cos (\alpha + \beta )} \\ {l_{t} \cdot \sin (\alpha + \beta )} \\ \end{array} } \right],P_{h} = \left[ {\begin{array}{*{20}c} 0 \\ {l_{h} \cdot \cos (\alpha + \beta + \gamma )} \\ {l_{h} \cdot \sin (\alpha + \beta + \gamma )} \\ \end{array} } \right] \hfill \\ \end{gathered} \right.$$
(2)

pre-contact phase: \({F}_{leg}={\left[0\quad0\quad0\right]}^{T}\)

contact phase:

$$\left\{ \begin{gathered} y_{hip} = l_{s} \cdot \cos (\alpha ) + l_{t} \cdot \cos (\alpha + \beta ) \hfill \\ z_{hip} = l_{s} \cdot \sin (\alpha ) + l_{t} \cdot \sin (\alpha + \beta ) \hfill \\ \theta_{1} = \arctan (z_{hip} /y_{hip} ) \hfill \\ l_{leg1} = (y_{hip}^{2} + z_{hip}^{2} )^{1/2} \hfill \\ l_{leg\_o} = l_{s} + l_{t} \hfill \\ l_{leg\_r} = (l_{leg1}^{2} + sl^{2} - 2l_{leg1} \cdot sl \cdot \cos (\theta_{1} ))^{1/2} \hfill \\ \theta = \arccos (sl^{2} + l_{leg\_r}^{2} - l_{leg1}^{2} )/(2sl \cdot l_{leg\_r} ) \hfill \\ \end{gathered} \right. \Rightarrow \left\{ \begin{gathered} f_{leg} = k_{leg} \cdot (l_{leg\_o} - l_{leg\_r} ) \hfill \\ f_{leg\_y} = - f_{leg} \cdot \cos (\theta ) \hfill \\ \, f_{leg\_z} = f_{leg} \cdot \sin (\theta ) \hfill \\ \end{gathered} \right.$$
(3)

where \(\alpha ,\beta ,\gamma ,\theta\) are joint angles and \({k}_{\text{ankle}},{k}_{\text{knee}},{k}_{hip}\) are the spring coefficients of the torque springs acting on each joint, respectively; \({k}_{leg}\) is the spring coefficient of the linear spring Leg; \({F}_{leg}\) is the force generated by the Leg on the recovery side, \({f}_{leg}\) is the magnitude of force; \({l}_{leg\_o},{l}_{leg\_r}\) are the Leg original length and the length during the balance recovery process, respectively. \(\tau\) is the joint torque; F is the joint reaction force; I is body segment moment of inertia, m is body segment mass, l is body segment length. The first letter of the subscript indicates the body segment, and the second letter indicates the proximal or distal end of the body segment. s stands for Shank, t stands for Thigh, h stands for Hat, p stands for proximal, d stands for distal. \({P}_{s},{P}_{t},{P}_{h}\) are the coordinates of the center of mass of the Shank, Thigh and HAT, respectively.

1.2 Shank motion equations

$$\begin{gathered} \left\{ \begin{gathered} V_{sd} = \alpha \times P_{s} \hfill \\ V_{sc} = \alpha \times 0.5P \hfill \\ \dot{V}_{sd} = \ddot{\alpha } \times P_{s} + \dot{\alpha } \times (\dot{\alpha } \times P_{s} ) \, \hfill \\ \dot{V}_{sc} = \ddot{\alpha } \times 0.5P_{s} + \dot{\alpha } \times (\dot{\alpha } \times 0.5P_{s} ) \hfill \\ \end{gathered} \right. \hfill \\ \left\{ \begin{gathered} F_{s} = m_{s} \cdot \dot{V}_{sc} \hfill \\ F_{s} = F_{sp} + F_{sd} - [0,0,m_{s} \cdot g]^{T} \hfill \\ \end{gathered} \right. \, \hfill \\ \Rightarrow m_{s} \cdot \dot{V}_{sc} = F_{sp} + F_{sd} - [0,0,m_{s} \cdot g]^{T} \hfill \\ \left\{ \begin{gathered} \tau_{s} = I_{s} \cdot \ddot{\alpha } \hfill \\ \tau_{s} = \tau_{sp} + \tau_{sd} + 0.5P_{s} \times (F_{sd} - F_{sp} ) \hfill \\ \end{gathered} \right. \hfill \\ \Rightarrow I_{s} \cdot \ddot{\alpha } = \tau_{sp} + \tau_{sd} + 0.5P_{s} \times (F_{sd} - F_{sp} ) \hfill \\ \Rightarrow \hfill \\ I_{s} \cdot \ddot{\alpha } + 0.5P_{s} \times (m_{s} \cdot \dot{V}_{sc} ) = \tau_{sp} + \tau_{sd} + 0.5P_{s} \times (2F_{sd} - [0,0,m_{s} \cdot g]^{T} ) \hfill \\ \end{gathered}$$
(4)

1.3 Thigh motion equations

$$\begin{gathered} \left\{ \begin{gathered} V_{td} = V_{sd} + (\dot{\alpha } + \dot{\beta }) \times P_{t} \hfill \\ V_{tc} = V_{sd} + (\dot{\alpha } + \dot{\beta }) \times 0.5P_{t} \hfill \\ \dot{V}_{td} = \dot{V}_{sd} + (\ddot{\alpha } + \ddot{\beta }) \times P_{t} + (\dot{\alpha } + \dot{\beta }) \times [(\dot{\alpha } + \dot{\beta }) \times P_{t} )] \hfill \\ \dot{V}_{tc} = \dot{V}_{sd} + (\ddot{\alpha } + \ddot{\beta }) \times 0.5P_{t} + (\dot{\alpha } + \dot{\beta }) \times [(\dot{\alpha } + \dot{\beta }) \times 0.5P_{t} )] \hfill \\ \end{gathered} \right. \hfill \\ \left\{ \begin{gathered} F_{t} = mt \cdot \dot{V}tc \hfill \\ F_{t} = F_{tp} + F_{td} + F_{leg} - [0,0,m_{t} \cdot g]^{T} \hfill \\ \end{gathered} \right. \hfill \\ \Rightarrow m_{t} \cdot \dot{V}_{tc} = F_{tp} + F_{td} + F_{leg} - [0,0,m_{t} \cdot g]^{T} \hfill \\ \left\{ \begin{gathered} \tau_{t} = I_{t} \cdot \ddot{\beta } \hfill \\ \tau_{t} = \tau_{tp} + \tau_{td} + 0.5P_{t} \times (F_{td} - F_{tp} ) \hfill \\ \end{gathered} \right. \, \hfill \\ \Rightarrow I_{t} \cdot \ddot{\beta } = \tau_{tp} + \tau_{td} + 0.5P_{t} \times (F_{td} - F_{tp} ) \hfill \\ \Rightarrow \hfill \\ I_{t} \cdot \ddot{\beta } + 0.5P_{t} \times (m_{t} \cdot \dot{V}_{tc} ) = \tau_{tp} + \tau_{td} + 0.5P_{t} \times (2F_{td} + F_{leg} - [0,0,m_{t} \cdot g]^{T} ) \hfill \\ \end{gathered}$$
(5)

1.4 HAT motion equations

$$\begin{gathered} \left\{ \begin{gathered} V_{hd} = V_{td} + (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \times P_{h} \hfill \\ V_{hc} = V_{td} + (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \times 0.5P_{h} \hfill \\ \dot{V}_{hd} = \dot{V}_{td} + (\ddot{\alpha } + \ddot{\beta } + \ddot{\gamma }) \times P_{h} + (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \times [(\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \times P_{h} )] \hfill \\ \dot{V}_{hc} = \dot{V}_{td} + (\ddot{\alpha } + \ddot{\beta } + \ddot{\gamma }) \times 0.5P_{h} + (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \times [(\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \times 0.5P_{h} )] \hfill \\ \end{gathered} \right. \hfill \\ \left\{ \begin{gathered} F_{h} = m_{h} \cdot \dot{V}_{hc} \hfill \\ F_{h} = F_{hp} + F_{hd} - [\begin{array}{*{20}c} 0 & 0 & {m_{h} \cdot g} \\ \end{array} ]^{T} \hfill \\ \end{gathered} \right. \, \hfill \\ \Rightarrow m_{h} \cdot \dot{V}_{hc} = F_{hp} + F_{hd} - [0,0,m_{h} \cdot g]^{T} \hfill \\ \left\{ \begin{gathered} \tau_{h} = I_{h} \cdot \ddot{\gamma } \hfill \\ \tau_{h} = \tau_{hp} + \tau_{hd} + 0.5P_{h} \times (F_{hd} - F_{hp} ) \hfill \\ \end{gathered} \right. \hfill \\ \Rightarrow I_{h} \cdot \ddot{\gamma } = \tau_{hp} + \tau_{hd} + 0.5P_{h} \times (F_{hd} - F_{hp} ) \hfill \\ \Rightarrow \hfill \\ I_{h} \cdot \ddot{\gamma } + 0.5P_{h} \times (m_{h} \cdot \dot{V}_{hc} ) = \tau_{hp} + \tau_{hd} + 0.5P_{h} \times (2F_{hd} - [0,0,m_{h} \cdot g]^{T} ) \hfill \\ \end{gathered}$$
(6)

1.5 Standard motion equation form of balance recovery model

$$\begin{gathered} \left\{ \begin{gathered} I_{s} \cdot \ddot{\alpha } + 0.5P_{s} \times (m_{s} \cdot \dot{V}_{sc} ) = \tau_{sp} + \tau_{sd} + 0.5P_{s} \times (2F_{sd} - [0,0,m_{s} \cdot g]^{T} ) \hfill \\ I_{t} \cdot \ddot{\beta } + 0.5P_{t} \times (m_{t} \cdot \dot{V}_{tc} ) = \tau_{tp} + \tau_{td} + 0.5P_{t} \times (2F_{td} + F_{leg} - [0,0,m_{t} \cdot g]^{T} ) \hfill \\ I_{h} \cdot \ddot{\gamma } + 0.5P_{h} \times (m_{h} \cdot \dot{V}_{hc} ) = \tau_{hp} + \tau_{hd} + 0.5P_{h} \times (2F_{hd} - [0,0,m_{h} \cdot g]^{T} ) \hfill \\ \end{gathered} \right. \hfill \\ \Rightarrow \hfill \\ \left\{ \begin{gathered} D(q) \cdot \ddot{q} + C(q,\dot{q}) \cdot \dot{q} + G(q) = U(q) \hfill \\ \hfill \\ D = \left[ {\begin{array}{*{20}c} {D_{11} } & {D_{12} } & {D_{13} } \\ {D_{21} } & {D_{22} } & {D_{23} } \\ {D_{31} } & {D_{32} } & {D_{33} } \\ \end{array} } \right], \, C = \left[ {\begin{array}{*{20}c} {C_{11} } & {C_{12} } & {C_{13} } \\ {C_{21} } & {C_{22} } & {C_{23} } \\ {C_{31} } & {C_{32} } & {C_{33} } \\ \end{array} } \right] \hfill \\ G = \left[ {\begin{array}{*{20}c} {G_{1} } \\ {G_{2} } \\ {G_{3} } \\ \end{array} } \right], \, U = \left[ {\begin{array}{*{20}c} {U_{1} } \\ {U_{2} } \\ {U_{3} } \\ \end{array} } \right], \, q = \left[ {\begin{array}{*{20}c} \alpha \\ \beta \\ \gamma \\ \end{array} } \right] \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered}$$
(7)

where \(D\left(q\right)\) is inertia matrix, \(C\left(q,\dot{q}\right)\) is centrifugal force and Coriolis force matrix, \(G\left(q\right)\) is gravity matrix, \(U\left(q\right)\) is Generalized force matrix.

\(D\left(q\right)\):inertia matrix

$$\left\{ \begin{gathered} D_{11} = (4/3m_{s} + 4m_{t} + 4m_{h} ) \cdot (0.5l_{s} )^{2} + (2m_{t} + 4m_{h} ) \cdot 0.5l_{s} \cdot 0.5l_{t} \cdot \cos (\beta ) \hfill \\ \, + 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \cos (\beta + \gamma ) \hfill \\ D_{12} = (2m_{t} + 4m_{h} ) \cdot 0.5l_{s} \cdot 0.5l_{t} \cdot \cos (\beta ) + 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \cos (\beta + \gamma ) \hfill \\ D_{13} = 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \cos (\beta + \gamma ) \hfill \\ D_{21} = (2m_{t} + 4m_{h} ) \cdot 0.5l_{s} \cdot 0.5l_{t} \cdot \cos (\beta ) \hfill \\ \, + (4/3m_{t} + 4m_{h} ) \cdot (0.5l_{t} )^{2} + 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \cos (\gamma ) \hfill \\ D_{22} = (4/3m_{t} + 4m_{h} ) \cdot (0.5l_{t} )^{2} + 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \cos (\gamma ) \hfill \\ D_{23} = 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \cos (\gamma ) \hfill \\ D_{31} = 4/3m_{h} \cdot (0.5l_{h} )^{2} + 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \cos (\beta + \gamma ) \hfill \\ \, + 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \cos (\gamma ) \hfill \\ D_{32} = 4/3m_{h} \cdot (0.5l_{h} )^{2} + 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \cos (\gamma ) \hfill \\ D_{33} = 4/3m_{h} \cdot (0.5l_{h} )^{2} \hfill \\ \end{gathered} \right.$$
(8)

\(C\left(q,\dot{q}\right)\):centrifugal force and Coriolis force matrix

$$\left\{ \begin{gathered} C_{11} = - (2m_{t} + 4m_{h} ) \cdot 0.5l_{s} \cdot 0.5l_{t} \cdot \sin (\beta ) \cdot (\dot{\alpha } + \dot{\beta }) \hfill \\ \, - 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \sin (\beta + \gamma ) \cdot (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \hfill \\ C_{12} = - (2m_{t} + 4m_{h} ) \cdot 0.5l_{s} \cdot 0.5l_{t} \cdot \sin (\beta ) \cdot (\dot{\alpha } + \dot{\beta }) \hfill \\ \, - 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \sin (\beta + \gamma ) \cdot (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \hfill \\ C_{13} = - 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \sin (\beta + \gamma ) \cdot (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \hfill \\ C_{21} = - 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \sin (\gamma ) \cdot (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \hfill \\ \, + (2m_{t} + 4m_{h} ) \cdot 0.5l_{s} \cdot 0.5l_{t} \cdot \sin (\beta ) \cdot (\dot{\alpha }) \hfill \\ C_{22} = - 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \sin (\gamma ) \cdot (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \hfill \\ C_{23} = - 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \sin (\gamma ) \cdot (\dot{\alpha } + \dot{\beta } + \dot{\gamma }) \hfill \\ C_{31} = 2m_{h} \cdot 0.5l_{s} \cdot 0.5l_{h} \cdot \sin (\beta + \gamma ) \cdot (\dot{\alpha }) \hfill \\ \, + 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \sin (\gamma ) \cdot (\dot{\alpha } + \dot{\beta }) \hfill \\ C_{32} = 2m_{h} \cdot 0.5l_{t} \cdot 0.5l_{h} \cdot \sin (\gamma ) \cdot (\dot{\alpha } + \dot{\beta }) \hfill \\ C_{33} = 0 \hfill \\ \end{gathered} \right.$$
(9)

\(G\left(q\right)\):gravity matrix

$$\left\{\begin{array}{c}{G}_{1}=\left({m}_{s}+2{m}_{t}+2{m}_{h}\right)\cdot g\cdot {l}_{s}\cdot cos\left(\alpha \right)\\ {G}_{2}=\left({m}_{t}+2{m}_{h}\right)\cdot g\cdot {l}_{t}\cdot cos\left(\alpha +\beta \right)\\ {G}_{3}={m}_{h}\cdot g\cdot {l}_{h}\cdot cos\left(\alpha +\beta +\gamma \right)\end{array}\right.$$
(10)

\(U\left(q\right)\):generalized force matrix

$$\left\{\begin{array}{c}{U}_{1}={\tau }_{sp}+{\tau }_{sd}+2{f}_{leg\_z}\cdot {l}_{s}\cdot cos\left(\alpha \right)-2{f}_{leg\_y}\cdot {l}_{s}\cdot sin\left(\alpha \right)\\ {U}_{2}={\tau }_{tp}+{\tau }_{td}+2{f}_{leg\_z}\cdot {l}_{h}\cdot cos\left(\alpha +\beta \right)-2{f}_{leg\_y}\cdot {l}_{h}\cdot sin\left(\alpha +\beta \right)\\ {U}_{3}={\tau }_{hp}+{\tau }_{hd}\end{array}\right.$$
(11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Yang, Z., Wang, D. et al. A dynamic spatiotemporal model for fall warning and protection. Med Biol Eng Comput 62, 1061–1076 (2024). https://doi.org/10.1007/s11517-023-02999-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02999-5

Keywords

Navigation