Skip to main content
Log in

Prediction of medial knee contact force using multisource fusion recurrent neural network and transfer learning

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Estimation of knee contact force (KCF) during gait provides essential information to evaluate knee joint function. Machine learning has been employed to estimate KCF because of the advantages of low computational cost and real-time. However, the existing machine learning models do not adequately consider gait-related data’s temporal-dependent, multidimensional, and highly heterogeneous nature. This study is aimed at developing a multisource fusion recurrent neural network to predict the medial condyle KCF. First, a multisource fusion long short-term memory (MF-LSTM) model was established. Then, we developed a transfer learning strategy based on the MF-LSTM model for subject-specific medial KCF prediction. Four subjects with instrumented tibial prostheses were obtained from the literature. The results showed that the MF-LSTM model could predict medial KCF to a certain high level of accuracy (the mean of ρ = 0.970). The transfer learning model improved the prediction accuracy (the mean of ρ = 0.987). This study shows that the MF-LSTM model is a powerful and accurate computational tool for medial KCF prediction. Introducing transfer learning techniques could further improve the prediction performance for the target subject. This coupling strategy can help clinicians accurately estimate and track joint contact forces in real time.

Graphical abstract

Gait-related data are temporal-dependent, multidimensional, and highly heterogeneous. Therefore, we designed a multisource fusion recurrent neural network (MF-LSTM) structure and introduced a transfer learning strategy to predict knee contact force (KCF) during gait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett HJ, Shen G, Cates HE et al (2017) Effects of toe-in and toe-in with wider step width on level walking knee biomechanics in varus, valgus, and neutral knee alignments. Knee 24(6):1326–1334. https://doi.org/10.1016/j.knee.2017.08.058

    Article  PubMed  Google Scholar 

  2. Dell’isola A, Smith SL, Andersen MS et al (2017) Knee internal contact force in a varus malaligned phenotype in knee osteoarthritis (KOA). Osteoarthr Cartil 25(12):2007–2013. https://doi.org/10.1016/j.joca.2017.08.010

    Article  CAS  Google Scholar 

  3. Konrath JM, Karatsidis A, Schepers HM et al (2019) Estimation of the knee adduction moment and joint contact force during daily living activities using inertial motion capture. Sensors 19(7):1681–1692. https://doi.org/10.3390/s19071681

    Article  PubMed  PubMed Central  Google Scholar 

  4. Richards RE, Andersen MS, Harlaar J et al (2018) Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications. Osteoarthr Cartil 26(9):1203–1214. https://doi.org/10.1016/j.joca.2018.04.011

    Article  CAS  Google Scholar 

  5. Liu F, Wang M, Wang J et al (2019) The influence of frontally flat bearing design on contact mechanics and kinematics in total knee joint replacements. Tribol Int 08(136):23–30. https://doi.org/10.1016/j.triboint.2019.03.006

    Article  Google Scholar 

  6. Phanphet S, Dechjarern S, Jomjanyong S (2017) Above-knee prosthesis design based on fatigue life using finite element method and design of experiment. Med Eng Phys 43:86–91. https://doi.org/10.1016/j.medengphy.2017.01.001

    Article  PubMed  Google Scholar 

  7. Walker PS, Lowry MT, Kumar A (2014) The effect of geometric variations in posterior-stabilized knee designs on motion characteristics measured in a knee loading machine. Clin Orthop Relat Res 472(1):238–247. https://doi.org/10.1007/s11999-013-3088-2

    Article  PubMed  Google Scholar 

  8. Houserman DJ, Berend KR, Lombardi AV et al (2022) The viability of an artificial intelligence/machine learning prediction model to determine candidates for knee arthroplasty. J Arthroplasty. https://doi.org/10.1016/j.arth.2022.04.003

    Article  PubMed  Google Scholar 

  9. Lambrechts A, Wirix-Speetjens R, Maes F et al (2022) Artificial intelligence based patient-specific preoperative planning algorithm for total knee arthroplasty. Front Robot AI 9:840282. https://doi.org/10.3389/frobt.2022.840282

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kluge F, Hannink J, Pasluosta C et al (2018) Pre-operative sensor-based gait parameters predict functional outcome after total knee arthroplasty. Gait Posture 66:194–200. https://doi.org/10.1016/j.gaitpost.2018.08.026

    Article  PubMed  Google Scholar 

  11. Young-Shand KL, Roy PC, Dunbar MJ et al (2023) Gait biomechanics phenotypes among total knee arthroplasty candidates by machine learning cluster analysis. J Orthop Res 41(2):335–344. https://doi.org/10.1002/jor.25363

    Article  CAS  PubMed  Google Scholar 

  12. Simic M, Hinman RS, Wrigley TV et al (2011) Gait modification strategies for altering medial knee joint load: a systematic review. Arthritis Care Res 63(3):405–426. https://doi.org/10.1002/acr.20380

    Article  Google Scholar 

  13. Barrios JA, Crossley KM, Davis IS (2010) Gait retraining to reduce the knee adduction moment through real-time visual feedback of dynamic knee alignment. J Biomech 43(11):2208–2213. https://doi.org/10.1016/j.jbiomech.2010.03.040

    Article  PubMed  PubMed Central  Google Scholar 

  14. Felson DT, Nevitt MC, Zhang Y et al (2002) High prevalence of lateral knee osteoarthritis in Beijing Chinese compared with Framingham Caucasian subjects. Arthritis Rheum 46(5):1217–1222. https://doi.org/10.1002/art.10293

    Article  PubMed  Google Scholar 

  15. Jones RK, Chapman GJ, Findlow AH et al (2013) A new approach to prevention of knee osteoarthritis: reducing medial load in the contralateral knee. J Rheumatol 40(3):309–315. https://doi.org/10.3899/jrheum.120589

    Article  PubMed  Google Scholar 

  16. Heinlein B, Graichen F, Bender A et al (2007) Design, calibration and pre-clinical testing of an instrumented tibial tray. J Biomech 40(Supp-S1):S4–S10. https://doi.org/10.1016/j.jbiomech.2007.02.014

    Article  PubMed  Google Scholar 

  17. Arami A, Simoncini M, Atasoy O et al (2013) Instrumented knee prosthesis for force and kinematics measurements. IEEE Trans Autom Sci Eng 10(3):615–624. https://doi.org/10.1109/tase.2012.2226030

    Article  Google Scholar 

  18. Kutzner I, Heinlein B, Graichen F et al (2010) Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 43(11):2164–2173. https://doi.org/10.1016/j.jbiomech.2010.03.046

    Article  CAS  PubMed  Google Scholar 

  19. Peng Y, Zhang Z, Gao Y et al (2018) Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling. Med Eng Phys 52:31–40. https://doi.org/10.1016/j.medengphy.2017.11.008

    Article  PubMed  Google Scholar 

  20. Lerner ZF, Demer MS, Delp SL et al (2015) How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J Biomech 48(4):644–650. https://doi.org/10.1016/j.jbiomech.2014.12.049

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jung Y, Phan CB, Koo S (2016) Intra-articular knee contact force estimation during walking using force-reaction elements and subject-specific joint model. J Biomech Eng 138(2):021016–021021. https://doi.org/10.1115/1.4032414

    Article  PubMed  Google Scholar 

  22. Durandau G, Farina D, Sartori M (2018) Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans Biomed Eng 65(3):556–564. https://doi.org/10.1109/TBME.2017.2704085

    Article  PubMed  Google Scholar 

  23. Kang KT, Son J, Baek C et al (2018) Femoral component alignment in unicompartmental knee arthroplasty leads to biomechanical change in contact stress and collateral ligament force in knee joint. Arch Orthop Trauma Surg 138(4):563–572. https://doi.org/10.1007/s00402-018-2884-2

    Article  PubMed  Google Scholar 

  24. Damsgaard M, Rasmussen J, Christensen ST et al (2006) Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul Model Pract Theory 14(8):1100–1111. https://doi.org/10.1016/j.simpat.2006.09.001

    Article  Google Scholar 

  25. Fregly BJ, Besier TF, Lloyd DG et al (2011) Grand challenge competition to predict in vivo knee loads. J Orthop Res 30(4):503–513. https://doi.org/10.1002/jor.22023

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zaroug A, Lei DTH, Mudie K et al (2020) Lower limb kinematics trajectory prediction using long short-term memory neural networks. Front Bioeng Biotechnol 8:362. https://doi.org/10.3389/fbioe.2020.00362

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu L, Chen X, Cao S et al (2018) Feasibility study of advanced neural networks applied to sEMG-based force estimation. Sensors 18(10):3226. https://doi.org/10.3390/s18103226

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim SH, Kwon Y, Kim K et al (2020) Estimation of hand motion from piezoelectric soft sensor using deep recurrent network. Appl Sci 10(6):2194. https://doi.org/10.3390/app10062194

    Article  CAS  Google Scholar 

  29. Choi A, Jung H, Lee KY et al (2019) Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network. Med Biol Eng Comput 57:2693–2703. https://doi.org/10.1007/s11517-019-02056-0

    Article  PubMed  Google Scholar 

  30. Steven Eyobu O, Han DS (2018) Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18(9):2892. https://doi.org/10.3390/s18092892

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sadeghzadehyazdi N, Batabyal T, Acton ST (2021) Modeling spatiotemporal patterns of gait anomaly with a CNN-LSTM deep neural network. Expert Syst Appl 185:115582. https://doi.org/10.1016/j.eswa.2021.115582

    Article  Google Scholar 

  32. Gautam A, Panwar M, Biswas D et al (2020) MyoNet: a transfer-learning-based LRCN for lower limb movement recognition and knee joint angle prediction for remote monitoring of rehabilitation progress from sEMG. IEEE J Transl Eng Health Med 8:1–10. https://doi.org/10.1109/jtehm.2020.2972523

    Article  Google Scholar 

  33. Stetter BJ, Ringhof S, Krafft FC et al (2019) Estimation of knee joint forces in sport movements using wearable sensors and machine learning. Sensors 19(17):3690. https://doi.org/10.3390/s19173690

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ardestani MM, Chen Z, Wang L et al (2014) Feed forward artificial neural network to predict contact force at medial knee joint: application to gait modification. Neurocomputing 139:114–129. https://doi.org/10.1016/j.neucom.2014.02.054

    Article  Google Scholar 

  35. Zhu Y, Xu W, Luo G et al (2020) Random forest enhancement using improved artificial fish swarm for the medial knee contact force prediction. Artif Intell Med 103:101811. https://doi.org/10.1016/j.artmed.2020.101811

    Article  PubMed  Google Scholar 

  36. Dao TT (2019) From deep learning to transfer learning for the prediction of skeletal muscle forces. Med Biol Eng Comput 57(5):1049–1058. https://doi.org/10.1007/s11517-018-1940-y

    Article  PubMed  Google Scholar 

  37. Zhang L, Soselia D, Wang R et al (2022) Lower-limb joint torque prediction using LSTM neural networks and transfer learning. IEEE Trans Neural Syst Rehabil Eng 30:600–609. https://doi.org/10.1109/TNSRE.2022.3156786

    Article  PubMed  Google Scholar 

  38. Burton WS, Myers CA, Rullkoetter PJ (2021) Machine learning for rapid estimation of lower extremity muscle and joint loading during activities of daily living. J Biomech 123:110439. https://doi.org/10.1016/j.jbiomech.2021.110439

    Article  PubMed  Google Scholar 

  39. Windsor E, Cao W (2022) Improving exchange rate forecasting via a new deep multimodal fusion model. Appl Intell 52(14):16701–16717. https://doi.org/10.1007/s10489-022-03342-5

    Article  Google Scholar 

  40. Wang Y, Liu M, Bao Z et al (2018) Short-term load forecasting with multi-source data using gated recurrent unit neural networks. Energies 11(5):1138. https://doi.org/10.3390/en11051138

    Article  Google Scholar 

  41. Kutzner I, Bender A, Dymke J et al (2017) Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Joint J 99-B(6):779–787. https://doi.org/10.1302/0301-620x.99b6.Bjj-20160713.R1

    Article  CAS  PubMed  Google Scholar 

  42. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  43. Patrini I, Ruperti M, Moccia S et al (2020) Transfer learning for informative-frame selection in laryngoscopic videos through learned features. Med Biol Eng Comput 58:1225–1238. https://doi.org/10.1007/s11517-020-02127-7

    Article  PubMed  Google Scholar 

  44. Zhang J, Zhou W, Chen X et al (2019) Multisource selective transfer framework in multiobjective optimization problems. IEEE Trans Evol Comput 24(3):424–438. https://doi.org/10.1109/tevc.2019.2926107

    Article  Google Scholar 

  45. Sepp H, Schmidhuber J (1997) Long-short term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  46. Zou J, Zhang X, Zhang Y et al (2022) Prediction on the medial knee contact force in patients with knee valgus using transfer learning approaches: application to rehabilitation gaits. Comput Biol Med 150:106099. https://doi.org/10.1016/j.compbiomed.2022.106099

    Article  PubMed  Google Scholar 

  47. Howard J, Ruder S. Universal language model fine-tuning for text classification. 56th Annual Meeting of the Association-for-Computational-Linguistics (ACL), 2018: 328–339

  48. Yosinski J, Clune J, Bengio Y et al (2014) How transferable are features in deep neural networks ?. 28th Conference on Neural Information Processing Systems (NIPS)

  49. Razu SS (2017) EMG-driven forward dynamics simulation to estimate in vivo joint contact forces during normal, smooth, and bouncy gait. J Biomech Eng 140:071012. https://doi.org/10.1115/1.4038507

    Article  Google Scholar 

  50. Shu L, Yamamoto K, Yao J et al (2018) A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. J Biomech 77:146–154. https://doi.org/10.1016/j.jbiomech.2018.07.008

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by “the National Natural Science Foundation of China (Nos. 52035012, 52005418, and 52275215) and Natural Science Foundation of Sichuan Province (No. 2022NSFSC1940)”. The authors gratefully acknowledge “ Grand Challenge Competition to Predict In Vivo Knee Loads” for releasing the experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Zhang, X., Zhang, Y. et al. Prediction of medial knee contact force using multisource fusion recurrent neural network and transfer learning. Med Biol Eng Comput 62, 1333–1346 (2024). https://doi.org/10.1007/s11517-023-03011-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-03011-w

Keywords

Navigation