Skip to main content
Log in

A lightweight bladder tumor segmentation method based on attention mechanism

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In the endoscopic images of bladder, accurate segmentation of different grade bladder tumor from blurred boundary regions and highly variable shapes is of great significance for doctors’ diagnosis and patients’ later treatment. We propose a nested attentional feature fusion segmentation network (NAFF-Net) based on the encoder-decoder structure formed by the combination of weighted pyramid pooling module (WPPM) and nested attentional feature fusion (NAFF). Among them, WPPM applies the cascade of atrous convolution to enhance the overall perceptual field while introducing adaptive weights to optimize multi-scale feature extraction, NAFF integrates deep semantic information into shallow feature maps, effectively focusing on edge and detail information in bladder tumor images. Additionally, a weighted mixed loss function is constructed to alleviate the impact of imbalance between positive and negative sample distribution on segmentation accuracy. Experiments illustrate the proposed NAFF-Net achieves better segmentation results compared to other mainstream models, with a MIoU of 84.05%, MPrecision of 91.52%, MRecall of 90.81%, and F1-score of 91.16%, and also achieves good results on the public datasets Kvasir-SEG and CVC-ClinicDB. Compared to other models, NAFF-Net has a smaller number of parameters, which is a significant advantage in model deployment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jansen I, Lucas M, Bosschieter J, Boer OJ, Meijer SL, Leeuwen TG, Marquering HA, Nieuwenhuijzen JA, Bruin DM, Savci-Heijink CD (2020) Automated detection and grading of non-muscle-invasive urothelial cell carcinoma of the bladder. Am J Pathol 190(7):1483–1490

    Article  PubMed  Google Scholar 

  2. Lenis AT, Lec PM, Chamie K (2020) Bladder cancer: a review. Jama 324(19):1980–1991

    CAS  PubMed  Google Scholar 

  3. Hu X, Li G, Wu S (2022) Advances in diagnosis and therapy for bladder cancer. Cancers 14(13):3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanghvi AB, Allen EZ, Callenberg KM, Pantanowitz L (2019) Performance of an artificial intelligence algorithm for reporting urine cytopathology. Cancer Cytopathology 127(10):658–666

    Article  PubMed  Google Scholar 

  5. Jansen I, Lucas M, Bosschieter J, Boer OJ, Meijer SL, Leeuwen TG, Marquering HA, Nieuwenhuijzen JA, Bruin DM, Savci-Heijink CD (2020) Automated detection and grading of non-muscle-invasive urothelial cell carcinoma of the bladder. Am J Pathol 190(7):1483–1490

    Article  PubMed  Google Scholar 

  6. Lin Z, He Z, Yao R, Wang X, Liu T, Deng Y, Xie S (2022) Deep dual attention network for precise diagnosis of COVID-19 from chest CT images. IEEE Trans Artif Intell 5(1):104–114

  7. Lin Z, He Z, Wang X, Zhang B, Liu C, Su W, Tan J, Xie S (2023) DBGANet: dual-branch geometric attention network for accurate 3D tooth segmentation. IEEE Trans Circ Syst Video Technol 1–1

  8. Liu M, Han Y, Wang J, Wang C, Wang Y, Meijering E (2023) LSKANet: Long strip kernel attention network for robotic surgical scene segmentation. IEEE Trans Med Imaging, 1–1

  9. Zhao C, Shuai R, Ma L, Liu W, Wu M (2021) Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt++. Medical and Biological Engineering and Computing, 59(9):1815–1832

  10. Xun S, Li D, Zhu H, Chen M, Wang J, Li J, Chen M, Wu B, Zhang H, Chai X et al (2022) Generative adversarial networks in medical image segmentation: a review. Comput Biol Med 140:105063

    Article  PubMed  Google Scholar 

  11. Liu T, He Z, Lin Z, Cao G-Z, Su W, Xie S (2022) An adaptive image segmentation network for surface defect detection. IEEE Trans Neural Netw Learn Syst 1–14

  12. Shi M, Shen J, Yi Q, Weng J, Huang Z, Luo A, Zhou Y (2022) LMFFNet: a well-balanced lightweight network for fast and accurate semantic segmentation. IEEE Trans Neural Netw Learn Syst 3205–3219

  13. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing computer-assisted intervention, Springer, pp 234–241

  14. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  PubMed  Google Scholar 

  15. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

  16. Shehab LH, Fahmy OM, Gasser SM, El-Mahallawy MS (2021) An efficient brain tumor image segmentation based on deep residual networks (ResNets). J King Saud Univ-Eng Sci 33(6):404–412

    Google Scholar 

  17. Deng Y, Hou Y, Yan J, Zeng D (2022) ELU-Net: an efficient and lightweight U-Net for medical image segmentation. IEEE Access 10:35932–35941

    Article  Google Scholar 

  18. Ma X, Hadjiiski LM, Wei J, Chan H-P, Cha KH, Cohan RH, Caoili EM, Samala R, Zhou C, Lu Y (2019) U-Net based deep learning bladder segmentation in CT urography. Med Phys 46(4):1752–1765

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dolz J, Xu X, Rony J, Yuan J, Liu Y, Granger E, Desrosiers C, Zhang X, Ben Ayed I, Lu H (2018) Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med Phys 45(12):5482–5493

    Article  PubMed  Google Scholar 

  20. Liu J, Liu L, Xu B, Hou X, Liu B, Chen X, Shen L, Qiu G (2019) Bladder cancer multi-class segmentation in MRI with pyramid-in-pyramid network. In: 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), IEEE, pp 28–31

  21. Zhang B, Wang Y, Ding C, Deng Z, Li L, Qin Z, Ding Z, Bian L, Yang C (2023) Multi-scale feature pyramid fusion network for medical image segmentation. Int J Comput Assist Radiol Surg 18(2):353–365

    Article  PubMed  Google Scholar 

  22. Wu Y, Shen H, Tan Y, Shi Y (2022) Automatic liver tumor segmentation used the cascade multi-scale attention architecture method based on 3D U-Net. Int J Comput Assist Radiol Surg 17(10):1915–1922

    Article  PubMed  Google Scholar 

  23. Singh LK, Pooja Garg H, Khanna M (2022) Deep learning system applicability for rapid glaucoma prediction from fundus images across various data sets. Evolving Syst 13(6):807–836

    Article  Google Scholar 

  24. Singh LK, Khanna M, Thawkar S, Singh R (2023) Deep-learning based system for effective and automatic blood vessel segmentation from retinal fundus images. Multimed Tools Appl 1–45

  25. Niazi MKK, Yazgan E, Tavolara TE, Li W, Lee CT, Parwani A, Gurcan MN (2020) Semantic segmentation to identify bladder layers from H &E images. Diagn Pathol 15(1):1–8

    Article  Google Scholar 

  26. Shkolyar E, Jia X, Chang TC, Trivedi D, Mach KE, Meng MQ-H, Xing L, Liao JC (2019) Augmented bladder tumor detection using deep learning. Eur Urol 76(6):714–718

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu J, Cai L, Chen C, Fu X, Wang L, Yuan B, Yang X, Lu Q (2022) Cascade path augmentation UNet for bladder cancer segmentation in MRI. Med Phys 49(7):4622–4631

    Article  PubMed  Google Scholar 

  28. Huang X, Yue X, Xu Z, Chen Y (2022) Harnessing deep bladder tumor segmentation with logical clinical knowledge. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 725–735

  29. Zhang Q, Liang Y, Zhang Y, Tao Z, Li R, Bi H (2023) A comparative study of attention mechanism based deep learning methods for bladder tumor segmentation. Int J Med Inf 171:104984

    Article  Google Scholar 

  30. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4510–4520

  31. Dai Y, Gieseke F, Oehmcke S, Wu Y, Barnard K (2021) Attentional feature fusion. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp 3560–3569

  32. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the european conference on computer vision (ECCV), pp 801–818

  33. Lian X, Pang Y, Han J, Pan J (2021) Cascaded hierarchical atrous spatial pyramid pooling module for semantic segmentation. Pattern Recog 110:107622

    Article  Google Scholar 

  34. Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G (2018) Understanding convolution for semantic segmentation. In: 2018 IEEE winter conference on applications of computer vision (WACV), pp 1451–1460

  35. Hou Q, Zhang L, Cheng M-M, Feng J (2020) Strip Pooling: rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 4003–4012

  36. Cheng R, Razani R, Taghavi E, Li E, Liu B (2021) 2-S3Net: attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 12547–12556

  37. Liu Y, Shao Z, Hoffmann N (2021) Global attention mechanism: retain information to enhance channel-spatial interactions. arXiv:2112.05561

  38. Woo S, Park J, Lee J-Y, Kweon IS (2018) CBAM: convolutional block attention module. In: Proceedings of the european conference on computer vision (ECCV), pp 3–19

  39. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

  40. El Jurdi R, Petitjean C, Honeine P, Cheplygina V, Abdallah F (2021) High-level prior-based loss functions for medical image segmentation: a survey. Comput Vis Image Underst 210:103248

    Article  Google Scholar 

  41. Li X, Sun X, Meng Y, Liang J, Wu F, Li J (2019) Dice loss for data-imbalanced NLP tasks. arXiv:1911.02855

  42. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  Google Scholar 

  43. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890

  44. Sun K, Zhao Y, Jiang B, Cheng T, Xiao B, Liu D, Mu Y, Wang X, Liu W, Wang J (2019) High-resolution representations for labeling pixels and regions. arXiv:1904.04514

  45. Zhang W, Pang J, Chen K, Loy CC (2021) K-Net: towards unified image segmentation. Adv Neural Inf Process Syst 34:10326–10338

    Google Scholar 

  46. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin Transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 10012–10022

  47. Yu C, Gao C, Wang J, Yu G, Shen C, Sang N (2021) BiSeNetv2: bilateral network with guided aggregation for real-time semantic segmentation. Int J Comput Vis 129:3051–3068

    Article  Google Scholar 

  48. Xie E, Wang W, Yu Z, Anandkumar A, Alvarez JM, Luo P (2021) SegFormer: simple and efficient design for semantic segmentation with transformers. Adv Neural Inf Process Syst 34:12077-12090

    Google Scholar 

  49. Jha D, Smedsrud PH, Riegler MA, Halvorsen P, Lange T, Johansen D, Johansen, HD (2020) Kvasir-SEG: a segmented polyp dataset. In: MultiMedia modeling: 26th international conference, MMM 2020, Daejeon, South Korea, January 5–8, 2020, Proceedings, Part II 26, Springer, pp 451–462

  50. Bernal J, Sánchez FJ, Fernández-Esparrach G, Gil D, Rodríguez C, Vilariño F (2015) WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput Med Imaging Graph 43:99–111

    Article  PubMed  Google Scholar 

  51. Zhou S, Tian S, Yu L, Wu W, Zhang D, Peng Z, Zhou Z (2023) ReFixMatch-LS: reusing pseudo-labels for semi-supervised skin lesion classification. Med Biol Eng Comput 61(5):1033–1045

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Guo or Gongxian Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lai, L., Li, Y. et al. A lightweight bladder tumor segmentation method based on attention mechanism. Med Biol Eng Comput 62, 1519–1534 (2024). https://doi.org/10.1007/s11517-024-03018-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03018-x

Keywords

Navigation