Skip to main content

Advertisement

Log in

Biomechanical evaluation of various rigid internal fixation modalities for condylar-base-associated multiple mandibular fractures: A finite element analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Condylar-base-associated multiple mandibular fractures are more prevalent than single ones. Direct trauma to mandibular symphysis, body or angle are prone to induce indirect condylar fracture. However, little is known about the effects of various rigid internal fixation modalities in condylar base for relevant multiple mandibular fractures, especially when we are confused in the selection of operative approach. Within the finite element analysis, straight-titanium-plate implanting positions in condylar base contained posterolateral zone (I), anterolateral zone (II), and intermediate zone (III). Von Mises stress (SS) in devices and bone and mandibular displacement (DT) were solved, while maximum values (SSmax and DTmax) were documented. For rigid internal fixation in condylar-base-and-symphysis fractures, I + II modality exhibited least SSmax in screws and cortical bone and least DTmax, I + III modality exhibited least SSmax in plates. For rigid internal fixation in condylar-base-and-contralateral-body fractures, I + III modality exhibited least SSmax in screws and cortical bone, I + II modality exhibited least SSmax in plates and least DTmax. For rigid internal fixation in condylar-base-and-contralateral-angle fractures, I + III modality exhibited least DTmax. The findings suggest that either I + II or I + III modality is a valid guaranty for rigid internal fixation of condylar base fractures concomitant with symphysis, contralateral body or angle fractures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Boffano P, Roccia F, Zavattero E, Dediol E, Uglešić V, Kovačič Ž, Vesnaver A, Konstantinović VS, Petrović M, Stephens J, Kanzaria A, Bhatti N, Holmes S, Pechalova PF, Bakardjiev AG, Malanchuk VA, Kopchak AV, Galteland P, Mjøen E, Skjelbred P, Koudougou C, Mouallem G, Corre P, Løes S, Lekven N, Laverick S, Gordon P, Tamme T, Akermann S, Karagozoglu KH, Kommers SC, Forouzanfar T (2015) European Maxillofacial Trauma (EURMAT) project: a multicentre and prospective study. J Craniomaxillofac Surg 43(1):62–70. https://doi.org/10.1016/j.jcms.2014.10.011

    Article  PubMed  Google Scholar 

  2. Loukota RA, Eckelt U, De Bont L, Rasse M (2005) Subclassification of fractures of the condylar process of the mandible. Br J Oral Maxillofac Surg 43(1):72–73. https://doi.org/10.1016/j.bjoms.2004.08.018

    Article  PubMed  Google Scholar 

  3. Satishchandran S, Umorin M, Manhan AJ, Abramowicz S, Amin D (2023) Does the treatment approach for mandibular condyle fractures impact self-perceived quality of life? J Oral Maxillofac Surg 81(2):184–193. https://doi.org/10.1016/j.joms.2022.10.006

    Article  PubMed  Google Scholar 

  4. Li J, Yang H, Han L (2019) Open versus closed treatment for unilateral mandibular extra-capsular condylar fractures: a meta-analysis. J Craniomaxillofac Surg 47(7):1110–1119. https://doi.org/10.1016/j.jcms.2019.03.021

    Article  PubMed  Google Scholar 

  5. Li J, Jiao J, Luo T, Wu W (2022) Biomechanical evaluation of various internal fixation patterns for unilateral mandibular condylar base fractures: a three-dimensional finite element analysis. J Mech Behav Biomed Mater 133(9):105354. https://doi.org/10.1016/j.jmbbm.2022.105354

    Article  PubMed  Google Scholar 

  6. Bu L, Wei X, Zheng J, Qiu Y, Yang C (2022) Evaluation of internal fixation techniques for extracapsular fracture: a finite element analysis and comparison. Comput Methods Programs Biomed 225:107072. https://doi.org/10.1016/j.cmpb.2022.107072

    Article  PubMed  Google Scholar 

  7. Conci RA, Garbin E Jr, Griza GL, Érnica NM, Noritomi PY, Silveira Tomazi FH, Fritscher GG, Heitz C (2018) Does lag screw fixation of condylar fractures result in adequate stability? A finite element analysis. J Craniomaxillofac Surg 46(6):1041–1045. https://doi.org/10.1016/j.jcms.2018.04.008

    Article  PubMed  Google Scholar 

  8. Conci RA, Tomazi FH, Noritomi PY, da Silva JV, Fritscher GG, Heitz C (2015) Comparison of neck screw and conventional fixation techniques in mandibular condyle fractures using 3-dimensional finite element analysis. J Oral Maxillofac Surg 73(7):1321–1327. https://doi.org/10.1016/j.joms.2015.01.037

    Article  PubMed  Google Scholar 

  9. Ergezen E, Akdeniz SS (2020) Evaluation of stress distribution of four different fixation systems at high- and low-level subcondylar fractures on a nonhomogenous finite element model. J Oral Maxillofac Surg 78(9):1596.e1591-1596.e1512. https://doi.org/10.1016/j.joms.2020.04.017

    Article  Google Scholar 

  10. Keskin Yalcin B (2023) Biomechanical comparison of titanium and poly-L-lactic acid trapezoidal plates applied in a subcondylar fracture model. J Craniofac Surg 34(6):1737–1740. https://doi.org/10.1097/scs.0000000000009238

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ellis E 3rd (2013) Open reduction and internal fixation of combined angle and body/symphysis fractures of the mandible: how much fixation is enough? J Oral Maxillofac Surg 71(4):726–733. https://doi.org/10.1016/j.joms.2012.09.017

    Article  PubMed  Google Scholar 

  12. Morris C, Bebeau NP, Brockhoff H, Tandon R, Tiwana P (2015) Mandibular fractures: an analysis of the epidemiology and patterns of injury in 4,143 fractures. J Oral Maxillofac Surg 73(5):951.e951-951.e912. https://doi.org/10.1016/j.joms.2015.01.001

    Article  Google Scholar 

  13. Sancar B, Çetiner Y, Dayı E (2023) Evaluation of the pattern of fracture formation from trauma to the human mandible with finite element analysis. Part 1: Symphysis region. Dent Traumatol 39(4):352–360. https://doi.org/10.1111/edt.12825

    Article  PubMed  Google Scholar 

  14. Sancar B, Çetiner Y, Dayı E (2023) Evaluation of the pattern of fracture formation from trauma to the human mandible with finite element analysis. Part 2: the corpus and the angle regions. Dent Traumatol 39(5):437–447. https://doi.org/10.1111/edt.12841

    Article  PubMed  Google Scholar 

  15. Brown JS, Khan A, Wareing S, Schache AG (2022) A new classification of mandibular fractures. Int J Oral Maxillofac Surg 51(1):78–90. https://doi.org/10.1016/j.ijom.2021.02.012

    Article  PubMed  Google Scholar 

  16. Huang CM, Chan MY, Hsu JT, Su KC (2021) Biomechanical analysis of subcondylar fracture fixation using miniplates at different positions and of different lengths. BMC Oral Health 21(1):543. https://doi.org/10.1186/s12903-021-01905-5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Erkmen E, Simşek B, Yücel E, Kurt A (2005) Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. Br J Oral Maxillofac Surg 43(2):97–104. https://doi.org/10.1016/j.bjoms.2004.10.007

    Article  PubMed  Google Scholar 

  18. Murakami K, Yamamoto K, Sugiura T, Horita S, Matsusue Y, Kirita T (2017) Computed tomography-based 3-dimensional finite element analyses of various types of plates placed for a virtually reduced unilateral condylar fracture of the mandible of a patient. J Oral Maxillofac Surg 75(6):1239.e1231-1239.e1211. https://doi.org/10.1016/j.joms.2017.02.014

    Article  Google Scholar 

  19. Li J, Zhao Z, Yin P, Zhang L, Tang P (2019) Comparison of three different internal fixation implants in treatment of femoral neck fracture-a finite element analysis. J Orthop Surg Res 14(1):76. https://doi.org/10.1186/s13018-019-1097-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pavlychuk T, Chernogorskyi D, Chepurnyi Y, Neff A, Kopchak A (2020) Biomechanical evaluation of type p condylar head osteosynthesis using conventional small-fragment screws reinforced by a patient specific two-component plate. Head Face Med 16(1):25. https://doi.org/10.1186/s13005-020-00236-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pemmada R, Telang VS, Tandon P, Thomas V (2024) Patient-specific mechanical analysis of PCL periodontal membrane: modeling and simulation. J Mech Behav Biomed Mater 151:106397. https://doi.org/10.1016/j.jmbbm.2024.106397

    Article  PubMed  Google Scholar 

  22. Huang HL, Su KC, Fuh LJ, Chen MY, Wu J, Tsai MT, Hsu JT (2015) Biomechanical analysis of a temporomandibular joint condylar prosthesis during various clenching tasks. J Craniomaxillofac Surg 43(7):1194–1201. https://doi.org/10.1016/j.jcms.2015.04.016

    Article  PubMed  Google Scholar 

  23. Lee YH, Chung CJ, Wang CW, Peng YT, Chang CH, Chen CH, Chen YN, Li CT (2016) Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Comput Biol Med 71:35–45. https://doi.org/10.1016/j.compbiomed.2016.01.024

    Article  PubMed  Google Scholar 

  24. Leiser Y, Peled M, Braun R, Abu-El Naaj I (2013) Treatment of low subcondylar fractures - a 5-year retrospective study. Int J Oral Maxillofac Surg 42(6):716–720. https://doi.org/10.1016/j.ijom.2013.03.006

    Article  PubMed  Google Scholar 

  25. Singh V, Kumar N, Bhagol A, Jajodia N (2018) A comparative evaluation of closed and open treatment in the management of unilateral displaced mandibular subcondylar fractures: a prospective randomized study. Craniomaxillofac Trauma Reconstr 11(3):205–210. https://doi.org/10.1055/s-0037-1603499

    Article  PubMed  Google Scholar 

  26. Nam SM, Kim YB, Lee SJ, Park ES, Lee JH (2019) A comparative study of intraoral versus retromandibular approach in the management of subcondylar fracture. BMC Surg 19(1):28. https://doi.org/10.1186/s12893-019-0487-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nowair IM, Essa EF, Eid MK (2022) A comparative evaluation of retromandibular versus Modified Risdon approach in surgical treatment of condylar fracture. J Craniomaxillofac Surg 50(3):237–245. https://doi.org/10.1016/j.jcms.2021.12.010

    Article  PubMed  Google Scholar 

  28. Nam SM, Lee JH, Kim JH (2013) The application of the Risdon approach for mandibular condyle fractures. BMC Surg 13:25. https://doi.org/10.1186/1471-2482-13-25

    Article  PubMed  PubMed Central  Google Scholar 

  29. Al-Moraissi EA, Louvrier A, Colletti G, Wolford LM, Biglioli F, Ragaey M, Meyer C, Ellis E 3rd (2018) Does the surgical approach for treating mandibular condylar fractures affect the rate of seventh cranial nerve injuries? A systematic review and meta-analysis based on a new classification for surgical approaches. J Craniomaxillofac Surg 46(3):398–412. https://doi.org/10.1016/j.jcms.2017.10.024

    Article  PubMed  Google Scholar 

  30. Ganguly A, Mittal G, Garg R (2021) Comparison between 3D delta plate and conventional miniplate in treatment of condylar fracture: a randomised clinical trial. J Craniomaxillofac Surg 49(11):1026–1034. https://doi.org/10.1016/j.jcms.2021.01.026

    Article  PubMed  Google Scholar 

  31. Liokatis P, Tzortzinis G, Gerasimidis S, Smolka W (2022) Application of the lambda plate on condylar fractures: finite element evaluation of the fixation rigidity for different fracture patterns and plate placements. Injury 53(4):1345–1352. https://doi.org/10.1016/j.injury.2022.01.032

    Article  PubMed  Google Scholar 

  32. Scott C, Ramakrishnan K, Vivek N, Saravanan C, Prashanthi G (2021) Does three-dimensional plate offer better outcome and reduce the surgical time following open reduction and internal fixation of adult mandibular unilateral subcondylar fractures. A randomized clinical study. J Oral Maxillofac Surg 79(6):1330.e1331-1330.e1331. https://doi.org/10.1016/j.joms.2020.12.023

    Article  Google Scholar 

  33. Sukegawa S, Kanno T, Masui M, Sukegawa-Takahashi Y, Kishimoto T, Sato A, Furuki Y (2019) Which fixation methods are better between three-dimensional anatomical plate and two miniplates for the mandibular subcondylar fracture open treatment? J Craniomaxillofac Surg 47(5):771–777. https://doi.org/10.1016/j.jcms.2019.01.033

    Article  PubMed  Google Scholar 

  34. Bhagat JA, Naganathan V, Krishnan L, Raj D, Prakash R (2019) Development of a new V-shaped implant with locking plates and screws for mandibular fracture fixation: an in vitro study using finite element analysis. Br J Oral Maxillofac Surg 57(8):805–807. https://doi.org/10.1016/j.bjoms.2019.07.014

    Article  PubMed  Google Scholar 

  35. Kende PP, Wadewale M, Ranganath S, Desai H, Landge JS, Sarda A (2022) An in vitro evaluation of a novel design Z plate for fixation of mandibular symphysis and parasymphysis fractures-a finite element analysis. J Maxillofac Oral Surg 21(3):929–935. https://doi.org/10.1007/s12663-021-01576-3

    Article  PubMed  Google Scholar 

  36. Liu YF, Fan YY, Jiang XF, Baur DA (2017) A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis. Biomed Eng Online 16(1):131. https://doi.org/10.1186/s12938-017-0422-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lovald S, Baack B, Gaball C, Olson G, Hoard A (2010) Biomechanical optimization of bone plates used in rigid fixation of mandibular symphysis fractures. J Oral Maxillofac Surg 68(8):1833–1841. https://doi.org/10.1016/j.joms.2009.09.108

    Article  PubMed  Google Scholar 

  38. Lovald ST, Wagner JD, Baack B (2009) Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures. J Oral Maxillofac Surg 67(5):973–985. https://doi.org/10.1016/j.joms.2008.12.032

    Article  PubMed  Google Scholar 

  39. Taalab DA, Shehab AF, Atef M, Shehab MF (2023) Comparative study between patient specific titanium plates versus conventional miniplates for treatment of mandibular fractures: randomized clinical trial. J Craniomaxillofac Surg 51(4):217–223. https://doi.org/10.1016/j.jcms.2023.01.015

    Article  PubMed  Google Scholar 

  40. Champy M, Loddé JP, Schmitt R, Jaeger JH, Muster D (1978) Mandibular osteosynthesis by miniature screwed plates via a buccal approach. J Maxillofac Surg 6(1):14–21. https://doi.org/10.1016/s0301-0503(78)80062-9

    Article  PubMed  Google Scholar 

  41. Sakong Y, Kim YH, Chung KJ (2021) Analysis of complication in mandibular angle fracture: champy technique versus rigid fixation. J Craniofac Surg 32(8):2732–2735. https://doi.org/10.1097/scs.0000000000007688

    Article  PubMed  Google Scholar 

  42. Wang R, Liu Y, Wang JH, Baur DA (2017) Effect of interfragmentary gap on the mechanical behavior of mandibular angle fracture with three fixation designs: a finite element analysis. J Plast Reconstr Aesthet Surg 70(3):360–369. https://doi.org/10.1016/j.bjps.2016.10.026

    Article  PubMed  Google Scholar 

  43. Kozakiewicz M, Swiniarski J (2014) “A” shape plate for open rigid internal fixation of mandible condyle neck fracture. J Craniomaxillofac Surg 42(6):730–737. https://doi.org/10.1016/j.jcms.2013.11.003

    Article  PubMed  Google Scholar 

  44. Sugiura T, Horiuchi K, Sugimura M, Tsutsumi S (2000) Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskelet Neuronal Interact 1(2):165–170

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jie Li and Chang-yi Li. Software, Writing—original draft, Visualization and Supervision: Jie Li. Methodology: Chong-tao Xu and Wei Wu. Writing—review & editing: Chong-tao Xu and Ying Li. Project administration: Yuan Liang. Funding acquisition: Chang-yi Li. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chang-yi Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, Ct., Li, Y. et al. Biomechanical evaluation of various rigid internal fixation modalities for condylar-base-associated multiple mandibular fractures: A finite element analysis. Med Biol Eng Comput 62, 2787–2803 (2024). https://doi.org/10.1007/s11517-024-03102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03102-2

Keywords