Skip to main content

Advertisement

Log in

Analysis of non-physiological shear stress-induced red blood cell trauma across different clinical support conditions of the blood pump

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Systematic research into device-induced red blood cell (RBC) damage beyond hemolysis, including correlations between hemolysis and RBC-derived extracellular vesicles, remains limited. This study investigated non-physiological shear stress-induced RBC damage and changes in related biochemical indicators under two blood pump clinical support conditions. Pressure heads of 100 and 350 mmHg, numerical simulation methods, and two in vitro loops were utilized to analyze the shear stress and changes in RBC morphology, hemolysis, biochemistry, metabolism, and oxidative stress. The blood pump created higher shear stress in the 350-mmHg condition than in the 100-mmHg condition. With prolonged blood pump operation, plasma-free hemoglobin and cholesterol increased, whereas plasma glucose and nitric oxide decreased in both loops. Notably, plasma iron and triglyceride concentrations increased only in the 350-mmHg condition. The RBC count and morphology, plasma lactic dehydrogenase, and oxidative stress across loops did not differ significantly. Plasma extracellular vesicles, including RBC-derived microparticles, increased significantly at 600 min in both loops. Hemolysis correlated with plasma triglyceride, cholesterol, glucose, and nitric oxide levels. Shear stress, but not oxidative stress, was the main cause of RBC damage. Hemolysis alone inadequately reflects overall blood pump-induced RBC damage, suggesting the need for additional biomarkers for comprehensive assessments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. The original datasets used and analyzed during the current study can be obtained from the corresponding author on reasonable request.

References

  1. Strunina S, Hozman J, Ostadal P (2019) The peripheral cannulas in extracorporeal life support. Biomed Eng Biomed Tech 64:127–133. https://doi.org/10.1515/bmt-2017-0107

    Article  Google Scholar 

  2. Khalid N, Javed H, Ahmad SA et al (2020) Analysis of the food and drug administration manufacturer and user facility device experience database for patient- and circuit-related adverse events involving extracorporeal membrane oxygenation. Cardiovasc Revasc Med 21:230–234. https://doi.org/10.1016/j.carrev.2019.11.011

    Article  PubMed  Google Scholar 

  3. Hayes MM, Fallon BP, Barbaro RP et al (2021) Membrane lung and blood pump use during prolonged extracorporeal membrane oxygenation: trends from 2002 to 2017. Asaio J 67(9):1067–1070.  https://doi.org/10.1097/MAT.0000000000001368

  4. Wu P, Xiang W, Yin C, Li S (2021) The design and evaluation of a portable extracorporeal centrifugal blood pump. Front Physiol 12:766867. https://doi.org/10.3389/fphys.2021.766867

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sun W, Wang S, Chen Z et al (2020) Impact of high mechanical shear stress and oxygenator membrane surface on blood damage relevant to thrombosis and bleeding in a pediatric ECMO circuit. Artif Organs 44:717–726. https://doi.org/10.1111/aor.13646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han D, Leibowitz JL, Han L et al (2022) Computational fluid dynamics analysis and experimental hemolytic performance of three clinical centrifugal blood pumps: Revolution, Rotaflow and CentriMag. Med Nov Technol Devices 15:100153. https://doi.org/10.1016/j.medntd.2022.100153

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kawahito K, Nos Y (1997) Hemolysis in different centrifugal pumps. Artif Organs 21(4):323–326. https://doi.org/10.1111/j.1525-1594.1997.tb00369.x

  8. Valladolid C, Yee A, Cruz MA (2018) von willebrand factor, free hemoglobin and thrombosis in ECMO. Front Med 5:228. https://doi.org/10.3389/fmed.2018.00228

    Article  Google Scholar 

  9. Materne LA, Hunsicker O, Menk M, Graw JA (2021) Hemolysis in patients with extracorporeal membrane oxygenation therapy for severe acute respiratory distress syndrome - a systematic review of the literature. Int J Med Sci 18:1730–1738. https://doi.org/10.7150/ijms.50217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kreyer S, Muders T, Theuerkauf N et al (2017) Hemorrhage under veno-venous extracorporeal membrane oxygenation in acute respiratory distress syndrome patients: a retrospective data analysis. J Thorac Dis 9:5017–5029. https://doi.org/10.21037/jtd.2017.11.05

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xia W, Huang Z, Guo Z et al (2020) Plasma volume, cell volume, total blood volume and F factor in the tree shrew. PLoS One 15:e0234835. https://doi.org/10.1371/journal.pone.0234835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Risinger M, Kalfa TA (2020) Red cell membrane disorders: structure meets function. Blood 136:1250–1261. https://doi.org/10.1182/blood.2019000946

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faghih MM, Sharp MK (2019) Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol 18:845–881. https://doi.org/10.1007/s10237-019-01137-1

    Article  PubMed  Google Scholar 

  14. Dupire J, Socol M, Viallat A (2012) Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci 109:20808–20813. https://doi.org/10.1073/pnas.1210236109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deutsch S, Tarbell JM, Manning KB et al (2006) Experimental fluid mechanics of pulsatile artificial blood pumps. Annu Rev Fluid Mech 38:65–86. https://doi.org/10.1146/annurev.fluid.38.050304.092022

    Article  Google Scholar 

  16. Simmonds MJ, Atac N, Baskurt OK et al (2014) Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress. Biorheology 51:171–185. https://doi.org/10.3233/BIR-140665

    Article  CAS  PubMed  Google Scholar 

  17. Horobin JT, Sabapathy S, Simmonds MJ (2020) Red blood cell tolerance to shear stress above and below the subhemolytic threshold. Biomech Model Mechanobiol 19:851–860. https://doi.org/10.1007/s10237-019-01252-z

    Article  PubMed  Google Scholar 

  18. McNamee AP, Tansley GD, Simmonds MJ (2018) Sublethal mechanical trauma alters the electrochemical properties and increases aggregation of erythrocytes. Microvasc Res 120:1–7. https://doi.org/10.1016/j.mvr.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Köhne I (2020) Haemolysis induced by mechanical circulatory support devices: unsolved problems. Perfusion 35:474–483. https://doi.org/10.1177/0267659120931307

    Article  PubMed  PubMed Central  Google Scholar 

  20. Buerck JP, Burke DK, Schmidtke DW et al (2019) A flow induced autoimmune response and accelerated senescence of red blood cells in cardiovascular devices. Sci Rep 9:19443. https://doi.org/10.1038/s41598-019-55924-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joop K, Berckmans R, Nieuwland R et al (2001) Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 85:810–820. https://doi.org/10.1055/s-0037-1615753

    Article  CAS  PubMed  Google Scholar 

  22. Straat M, van Hezel ME, Böing A et al (2016) Monocyte-mediated activation of endothelial cells occurs only after binding to extracellular vesicles from red blood cell products, a process mediated by β-integrin: RBC vesicles activate monocytes. Transfusion (Paris) 56:3012–3020. https://doi.org/10.1111/trf.13851

    Article  CAS  Google Scholar 

  23. Fischer D, Büssow J, Meybohm P et al (2017) Microparticles from stored red blood cells enhance procoagulant and proinflammatory activity: effects of RBC-derived microparticles. Transfusion (Paris) 57:2701–2711. https://doi.org/10.1111/trf.14268

    Article  CAS  Google Scholar 

  24. Zhang J, Gellman B, Koert A et al (2006) Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs 30:168–177. https://doi.org/10.1111/j.1525-1594.2006.00203.x

    Article  PubMed  Google Scholar 

  25. Day SW, McDaniel JC, Wood HG et al (2002) A prototype heartquest ventricular assist device for particle image velocimetry measurements. Artif Organs 26:1002–1005. https://doi.org/10.1046/j.1525-1594.2002.07124.x

    Article  PubMed  Google Scholar 

  26. Li Y, Wang H, Xi Y et al (2022) Multi-indicator analysis of mechanical blood damage with five clinical ventricular assist devices. Comput Biol Med 151:106271. https://doi.org/10.1016/j.compbiomed.2022.106271

    Article  PubMed  Google Scholar 

  27. Li Y, Xi Y, Wang H et al (2022) The impact of a new arterial intravascular pump on aorta hemodynamic surrounding: a numerical study. Bioengineering 9:547. https://doi.org/10.3390/bioengineering9100547

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Wang H, Xi Y et al (2023) Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO. Artif Organs 47(1):88–104. https://doi.org/10.1111/aor.14384

  29. Chen Z, Zhang J, Li T et al (2020) The impact of shear stress on device‐induced platelet hemostatic dysfunction relevant to thrombosis and bleeding in mechanically assisted circulation. Artif Organs 44(5):E201–213. https://doi.org/10.1111/aor.13609

  30. Fraser KH, Taskin ME, Griffith BP, Wu ZJ (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280. https://doi.org/10.1016/j.medengphy.2010.10.014

    Article  PubMed  Google Scholar 

  31. Li Y, Yu J, Wang H et al (2022) Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Artif Organs 46:1817–1832. https://doi.org/10.1111/aor.14265

    Article  PubMed  Google Scholar 

  32. Andrade A, Biscegli J, Dinkhuysen J et al (1996) Characteristics of a blood pump combining the centrifugal and axial pumping principles: the spiral pump. Artif Organs 20:605–612. https://doi.org/10.1111/j.1525-1594.1996.tb04489.x

    Article  CAS  PubMed  Google Scholar 

  33. Vion A-C, Ramkhelawon B, Loyer X et al (2013) Shear stress regulates endothelial microparticle release. Circ Res 112:1323–1333. https://doi.org/10.1161/CIRCRESAHA.112.300818

    Article  CAS  PubMed  Google Scholar 

  34. Ding J, Niu S, Chen Z et al (2015) Shear-induced hemolysis: species differences: shear-induced hemolysis: species differences. Artif Organs 39:795–802. https://doi.org/10.1111/aor.12459

    Article  PubMed  Google Scholar 

  35. Sutera SP (1977) Flow-induced trauma to blood cells. Circ Res 41:2–8. https://doi.org/10.1161/01.RES.41.1.2

    Article  CAS  PubMed  Google Scholar 

  36. Hodge AB, Deitemyer MA, Duffy VL et al (2018) Plasma Free Hemoglobin Generation Using the EOS PMPÔ Oxygenator and the CentriMag Blood Pump. J Extra Corpor Technol 50(2):94–98

  37. Chan C, Ki K, Zhang M et al (2021) Extracorporeal membrane oxygenation-induced hemolysis: an in vitro study to appraise causative factors. Membranes 11:313. https://doi.org/10.3390/membranes11050313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iolascon A, Andolfo I, Russo R (2019) Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol 187:13–24. https://doi.org/10.1111/bjh.16126

    Article  PubMed  Google Scholar 

  39. Fiusco F, Broman LM, PrahlWittberg L (2022) Blood pumps for extracorporeal membrane oxygenation: platelet activation during different operating conditions. ASAIO J 68:79–86. https://doi.org/10.1097/MAT.0000000000001493

    Article  CAS  PubMed  Google Scholar 

  40. Sobieski MA, Giridharan GA, Ising M et al (2012) Blood trauma testing of centrimag and rotaflow centrifugal flow devices: a pilot study: blood trauma testing. Artif Organs 36:677–682. https://doi.org/10.1111/j.1525-1594.2012.01514.x

    Article  PubMed  Google Scholar 

  41. Nishiie-Yano R, Hirayama S, Tamura M et al (2020) Hemolysis is responsible for elevation of serum iron concentration after regular exercises in judo athletes. Biol Trace Elem Res 197:63–69. https://doi.org/10.1007/s12011-019-01981-3

    Article  CAS  PubMed  Google Scholar 

  42. Delesderrier E, Curioni C, Omena J et al (2020) Antioxidant nutrients and hemolysis in sickle cell disease. Clin Chim Acta 510:381–390. https://doi.org/10.1016/j.cca.2020.07.020

    Article  CAS  PubMed  Google Scholar 

  43. Kato GJ, McGowan V, Machado RF et al (2006) Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 107:2279–2285. https://doi.org/10.1182/blood-2005-06-2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barcellini W, Fattizzo B (2015) Clinical applications of hemolytic markers in the differential diagnosis and management of hemolytic anemia. Dis Markers 2015:1–7. https://doi.org/10.1155/2015/635670

    Article  CAS  Google Scholar 

  45. Faghih MM, Keith Sharp M (2016) Extending the power-law hemolysis model to complex flows. J Biomech Eng 138:124504. https://doi.org/10.1115/1.4034786

    Article  Google Scholar 

  46. McNamee AP, Horobin JT, Tansley GD, Simmonds MJ (2018) Oxidative stress increases erythrocyte sensitivity to shear-mediated damage: oxidative stress and subhemolytic hemorheology. Artif Organs 42:184–192. https://doi.org/10.1111/aor.12997

    Article  CAS  PubMed  Google Scholar 

  47. Flatt JF, Bawazir WM, Bruce LJ (2014) The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol 5:214. https://doi.org/10.3389/fphys.2014.00214

  48. Schiar VPP, dos Santos DB, Paixão MW et al (2009) Human erythrocyte hemolysis induced by selenium and tellurium compounds increased by GSH or glucose: A possible involvement of reactive oxygen species. Chem Biol Interact 177:28–33. https://doi.org/10.1016/j.cbi.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  49. McDonald CI, Fraser JF, Coombes JS, Fung YL (2014) Oxidative stress during extracorporeal circulation. Eur J Cardiothorac Surg 46:937–943. https://doi.org/10.1093/ejcts/ezt637

    Article  PubMed  Google Scholar 

  50. Mohanty JG, Nagababu E, Rifkind JM (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol 5:84. https://doi.org/10.3389/fphys.2014.00084

  51. Nagababu E, Scott AV, Johnson DJ et al (2016) Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients: rbc oxidative stress and rheology. Transfusion (Paris) 56:1101–1111. https://doi.org/10.1111/trf.13458

    Article  CAS  Google Scholar 

  52. Dossena S, Marino A (2021) Cellular oxidative stress. Antioxidants 10:399. https://doi.org/10.3390/antiox10030399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Effenberger-Neidnicht K, Hartmann M (2018) Mechanisms of hemolysis during sepsis. Inflammation 41:1569–1581. https://doi.org/10.1007/s10753-018-0810-y

    Article  CAS  PubMed  Google Scholar 

  54. Ghashghaeinia M, Köberle M, Mrowietz U, Bernhardt I (2019) Proliferating tumor cells mimick glucose metabolism of mature human erythrocytes. Cell Cycle 18:1316–1334. https://doi.org/10.1080/15384101.2019.1618125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Wijk R, van Solinge WW (2005) The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood 106:4034–4042. https://doi.org/10.1182/blood-2005-04-1622

    Article  CAS  PubMed  Google Scholar 

  56. McNamee AP, Tansley GD, Simmonds MJ (2020) Sublethal mechanical shear stress increases the elastic shear modulus of red blood cells but does not change capillary transit velocity. Microcirculation 27:e12652. https://doi.org/10.1111/micc.12652

  57. Peterka O, Jirásko R, Chocholoušková M et al (2020) Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques. Biochim Biophys Acta BBA - Mol Cell Biol Lipids 1865:158634. https://doi.org/10.1016/j.bbalip.2020.158634

    Article  CAS  Google Scholar 

  58. Kaczmarska M, Grosicki M, Bulat K et al (2020) Temporal sequence of the human RBCs’ vesiculation observed in nano-scale with application of AFM and complementary techniques. Nanomedicine Nanotechnol Biol Med 28:102221. https://doi.org/10.1016/j.nano.2020.102221

    Article  CAS  Google Scholar 

  59. Ståhl A, Johansson K, Mossberg M et al (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34:11–30. https://doi.org/10.1007/s00467-017-3816-z

    Article  PubMed  Google Scholar 

  60. Genova J, Bivas I, Marinov R (2014) Cholesterol influence on the bending elasticity of lipid membranes. Colloids Surf Physicochem Eng Asp 460:79–82. https://doi.org/10.1016/j.colsurfa.2014.02.007

    Article  CAS  Google Scholar 

  61. Wu P, Bai Y, Du G et al (2023) Resistance valves in circulatory loops have a significant impact on in vitro evaluation of blood damage caused by blood pumps: a computational study. Front Physiol 14:1287207. https://doi.org/10.3389/fphys.2023.1287207

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant no. 2020YFC0862904, 2020YFC0862902, and 2020YFC0862900), National Natural Science Foundation of China (Grant no.12372300, 32071311) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Liu: Experimentation, Data collection, Data analysis/interpretation, Statistical analysis, Drafting of article, Critical revision of article; Yuan Li: CFD analysis, Critical revision of article, Approval of article; Jinze Jia: Experimentation, Critical revision of article, Approval of article; Hongyu Wang: Experimentation, Critical revision of article, Approval of article; Yifeng Xi: Experimentation, Critical revision of article, Approval of article; Anqaing SUN: Critical revision of article, Approval of article, Funding acquisition; Lizheng WANG: Critical revision of article, Approval of article, Funding acquisition; Xiaoyan DENG: Critical revision of article, Approval of article, Funding acquisition; Zengsheng CHEN: Critical revision of article, Approval of article, Funding acquisition; and Yubo FAN: Critical revision of article, Approval of article, Funding acquisition.

Corresponding authors

Correspondence to Zengsheng Chen or Yubo Fan.

Ethics declarations

Compliance with ethical standards

No live humans or animals were involved in this study; therefore, informed consent was not required. The ethical standard has been reviewed and approved by the Ethics Committee of the School of Biological and Medical Engineering, Beihang University.

Conflicts of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Y., Jia, J. et al. Analysis of non-physiological shear stress-induced red blood cell trauma across different clinical support conditions of the blood pump. Med Biol Eng Comput 62, 3209–3223 (2024). https://doi.org/10.1007/s11517-024-03121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03121-z

Keywords