Skip to main content

Advertisement

Log in

A comparative analysis of different augmentations for brain images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model’s performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The dataset used in this study was obtained from the Brain Stroke CT Image Dataset on the Kaggle, which is a popular online community for data science and machine learning. The specific dataset used for brain stroke detection in this study consisted of CT images from various medical institutions.

References

  1. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  2. Harshvardhan GM, Gourisaria MK, Pandey M, Rautaray SS (2020) A comprehensive survey and analysis of generative models in machine learning. Computer Science Review 38:100285

    Article  Google Scholar 

  3. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  4. Van der Velden BH, Kuijf HJ, Gilhuijs KG, Viergever MA (2022) Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 79:102470

    Article  PubMed  Google Scholar 

  5. LeCun Y, Bengio Y, Hinton G (2016) Deep learning. Nature 521(7553):4Z

    Google Scholar 

  6. Hussain Z, Gimenez F, Yi D, Rubin D (2017) Differential data augmentation techniques for medical imaging classification tasks. In: AMIA annual symposium proceedings, vol 2017. American Medical Informatics Association, p 979

    Google Scholar 

  7. Gibson E, Li W, Sudre C, Fidon L, Shakir DI, Wang G, Eaton-Rosen Z, Gray R, Doel T, Hu Y, Whyntie T (2018) NiftyNet: a deep- learning platform for medical imaging. Comput Methods Programs Biomed 158:113–122

    Article  PubMed  PubMed Central  Google Scholar 

  8. Park SC, Cha JH, Lee S, Jang W, Lee CS, Lee JK (2019) Deep learning-based deep brain stimulation targeting and clinical applications. Front Neurosci 13:468294

    Article  Google Scholar 

  9. Shin HC, Tenenholtz NA, Rogers JK, Schwarz CG, Senjem ML, Gunter JL, Andriole KP, Michalski M (2018) Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In Simulation and Synthesis in Medical Imaging: Third International Workshop SASHIMI 2018 Held in Conjunction with MICCAI 2018 Granada Spain September 16 2018 Proceedings 3. Springer International Publishing, pp 1–11

    Google Scholar 

  10. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6(1):1–48

    Article  Google Scholar 

  11. Halevy A, Norvig P, Pereira F (2009) The unreasonable effectiveness of data. IEEE Intell Syst 24(2):8–12

    Article  Google Scholar 

  12. Joffrey L, Taghi MK, Richard B (2018) A survey on addressing high-class imbalance in big data. J Big Data 5:42

    Article  Google Scholar 

  13. Cai L, Gao J, Zhao D (2020) A review of the application of deep learning in medical image classification and segmentation. Annals Transl Med 8:713

    Article  Google Scholar 

  14. Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In: 2018 international interdisciplinary PhD workshop (IIPhDW). IEEE, pp 117–122

    Google Scholar 

  15. Oman O, Mäkelä T, Salli E, Savolainen S, Kangasniemi M (2019) 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp 3:1–11

    Article  Google Scholar 

  16. Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) (2019) Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: 4th International Workshop BrainLes 2018 Held in Conjunction with MICCAI 2018 Granada Spain September 16 2018 Revised Selected Papers Part II (Vol. 11384). Springer

  17. Angulakshmi M, Lakshmi Priya GG (2017) Automated brain tumor segmentation techniques—a review. Int J Imaging Syst Technol 27(1):66–77

    Article  Google Scholar 

  18. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M (2018) Identifying the best machine learning algorithms for brain tumor segmentation progression assessment and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629

  19. Goceri E (2023) Medical image data augmentation: techniques, comparisons and interpretations. Artif Intell Rev 56(11):12561–12605

    Article  Google Scholar 

  20. Abdollahi B, Tomita N, Hassanpour S (2020) Data augmentation in training deep learning models for medical image analysis. In: Deep learners and deep learner descriptors for medical applications. pp 167–180

    Google Scholar 

  21. Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A (2021) A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol 65(5):545–563

    Article  PubMed  Google Scholar 

  22. Alshazly H, Linse C, Barth E, Martinetz T (2021) Explainable COVID-19 detection using chest CT scans and deep learning. Sensors 21(2):455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Y, Yang XH, Wei Z, Heidari AA, Zheng N, Li Z, Chen H, Hu H, Zhou Q, Guan Q (2022) Generative adversarial networks in medical image augmentation: a review. Comput Biol Med 144:105382

    Article  PubMed  Google Scholar 

  24. Cho J, Lee K, Shin E, Choy G, Do S (2015) How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? arXiv preprint arXiv:151106348

  25. Krizhevsky A, Sutskever I and Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25

  26. Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV (2018) Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501

  27. Yamashita R, Nishio M, Do RK, Togashi K (2018) Convolutional neural networks: an overview and application in radiology. Insights in Imaging 9:611–629

    Article  Google Scholar 

  28. Engstrom L, Tran B, Tsipras D, Schmidt L and Madry A (2018) A rotation and a translation suffice: Fooling cnns with simple transformations

  29. Takahashi R, Matsubara T, Uehara K (2019) Data augmentation using random image cropping and patching for deep CNNs. IEEE Trans Circuits Syst Video Technol 30(9):2917–2931

    Article  Google Scholar 

  30. Simonyan K and Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  31. Bengio Y, Louradour J, Collobert R, Weston J (2009) Curriculum learning. In: Proceedings of the 26th annual international conference on machine learning. pp 41–48

    Google Scholar 

  32. Zhang Y, Wu J, Liu Y, Chen Y, Wu EX, Tang X (2020) Mi-unet: multi-inputs unet incorporating brain parcellation for stroke lesion segmentation from t1-weighted magnetic resonance images. IEEE J Biomed Health Inform 25(2):526–535

    Article  Google Scholar 

  33. Casado-García Á, Domínguez C, García-Domínguez M et al (2019) CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation, and instance segmentation tasks. BMC Bioinformatics 20:1–14

    Article  Google Scholar 

  34. Bloice MD, Roth PM, Holzinger A (2019) Biomedical image augmentation using Augmentor. Bioinformatics 35:4522–4524

    Article  CAS  PubMed  Google Scholar 

  35. Sorin V, Barash Y, Konen E, Klang E (2020) Creating artificial images for radiology applications using generative adversarial networks (GANs)—a systematic review. Acad Radiol 27:1175–1185

    Article  PubMed  Google Scholar 

  36. Yi X, Walia E, Babyn P (2019) Generative adversarial network in medical imaging: a review. Med Image Anal 58:101552

    Article  PubMed  Google Scholar 

  37. Dufumier B, Gori P, Battaglia I, Victor J, Grigis A, Duchesnay E (2021) Benchmarking cnn on 3d anatomical brain MRI: architectures, data augmentation and deep ensemble learning. arXiv preprint arXiv:2106.01132

  38. Nishio M, Muramatsu C, Noguchi S, Nakai H, Fujimoto K, Sakamoto R, Fujita H (2020) Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network. Comput Biol Med 126:104032

    Article  PubMed  Google Scholar 

  39. Chen L, Bentley P, Rueckert D (2017) Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage Clin 15:633–643

    Article  PubMed  PubMed Central  Google Scholar 

  40. Engstrom L, Tran B, Tsipras D, Schmidt L and Madry A (2018) A rotation and a translation suffice: Fooling CNNs with simple transformations.

  41. Elad M, Milanfar P (2017) Style transfer via texture synthesis. IEEE Trans Image Process 26(5):2338–2351

    Article  PubMed  Google Scholar 

  42. Alomar K, Aysel HI, Cai X (2023) Data augmentation in classification and segmentation: a survey and new strategies. J Imaging 9(2):46

    Article  PubMed  PubMed Central  Google Scholar 

  43. Duong HT, Nguyen-Thi TA (2021) A review: preprocessing techniques and data augmentation for sentiment analysis. Comput Soc Networks 8(1):1–16

    Article  Google Scholar 

  44. Chaitanya K, Karani N, Baumgartner CF, Erdil E, Becker A, Donati O, Konukoglu E (2021) Semi-supervised task-driven data augmentation for medical image segmentation. Med Image Anal 68:101934

    Article  PubMed  Google Scholar 

  45. Asif U, Bennamoun M, Sohel FA (2017) A multi-modal, discriminative and spatially invariant CNN for RGB-D object labeling. IEEE Trans Pattern Anal Mach Intell 40(9):2051–2065

    Article  PubMed  Google Scholar 

  46. Castiglione J, Somasundaram E, Gilligan LA, Trout AT, Brady S (2021) Automated segmentation of abdominal skeletal muscle on pediatric CT scans using deep learning. Radiol Artif Intell 3(2):e200130

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H (2018) GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321:321–331

    Article  Google Scholar 

  48. Khan AR, Khan S, Harouni M, Abbasi R, Iqbal S, Mehmood Z (2021) Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification. Microsc Res Tech 84(7):1389–1399

    Article  PubMed  Google Scholar 

  49. Dufumier B, Gori P, Battaglia I, Victor J, Grigis A, Duchesnay E (2021) Benchmarking CNN on 3D anatomical brain MRI: architectures, data augmentation and deep ensemble learning. Microsc Res Tech 84(7):1389–1399

    Google Scholar 

  50. Isensee F, Jäger PF, Full PM, Vollmuth P, Maier-Hein KH (2021) nnU-Net for brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6. Springer International Publishing, pp 118–132

    Google Scholar 

  51. Williamson C, Morgan L, Klein JP (2017) Imaging in neurocritical care practice. In Seminars in respiratory and critical care medicine, vol 38. Thieme Medical Publishers, pp 840–852

    Google Scholar 

  52. Muschelli J (2019) Recommendations for processing head CT data. Front Neuroinform 13:61

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ugwuanyi DC, Sibeudu TF, Irole CP, Ogolodom MP, Nwagbara CT, Ibekwe AM, Mbaba AN (2020) Evaluation of common findings in brain computerized tomography (CT) scan: A single center study. AIMS Neurosci 7(3):311

    Article  PubMed  PubMed Central  Google Scholar 

  54. Power SP, Moloney F, Twomey M, James K, O’Connor OJ, Maher MM (2016) Computed tomography and patient risk: facts, perceptions and uncertainties. World Journal of Radiology 8(12):902

    Article  PubMed  PubMed Central  Google Scholar 

  55. Peng S-J, Chen Y-W, Yang J-Y, Wang K-W, Tsai J-Z (2022) Automated cerebral infarct detection on computed tomography images based on deep learning. Biomedicines 10(1):122

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Bajaj.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, S., Bala, M. & Angurala, M. A comparative analysis of different augmentations for brain images. Med Biol Eng Comput 62, 3123–3150 (2024). https://doi.org/10.1007/s11517-024-03127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03127-7

Keywords