Skip to main content

Advertisement

Log in

Intelligent alert system for predicting invasive mechanical ventilation needs via noninvasive parameters: employing an integrated machine learning method with integration of multicenter databases

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The use of invasive mechanical ventilation (IMV) is crucial in rescuing patients with respiratory dysfunction. Accurately predicting the demand for IMV is vital for clinical decision-making. However, current techniques are invasive and challenging to implement in pre-hospital and emergency rescue settings. To address this issue, a real-time prediction method utilizing only non-invasive parameters was developed to forecast IMV demand in this study. The model introduced the concept of real-time warning and leveraged the advantages of machine learning and integrated methods, achieving an AUC value of 0.935 (95% CI 0.933–0.937). The AUC value for the multi-center validation using the AmsterdamUMCdb database was 0.727, surpassing the performance of traditional risk adjustment algorithms (OSI(oxygenation saturation index): 0.608, P/F(oxygenation index): 0.558). Feature weight analysis demonstrated that BMI, Gcsverbal, and age significantly contributed to the model’s decision-making. These findings highlight the substantial potential of a machine learning real-time dynamic warning model that solely relies on non-invasive parameters to predict IMV demand. Such a model can provide technical support for predicting the need for IMV in pre-hospital and disaster scenarios.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Patnaik R, Misra R, Azim A et al (2021) Evaluation of ventilator associated events in critically ill patients with invasive mechanical ventilation: a prospective cohort study at a resource limited setting in Northern India. J Crit Care 64:29–35. https://doi.org/10.1016/j.jcrc.2021.03.001

    Article  PubMed  Google Scholar 

  2. Evans AM, Mahmoud AD, Moral-Sanz J, Hartmann S (2016) The emerging role of AMPK in the regulation of breathing and oxygen supply. Biochem J 473:2561–2572. https://doi.org/10.1042/BCJ20160002

    Article  PubMed  CAS  Google Scholar 

  3. Linsuwanon P, Payungporn S, Samransamruajkit R et al (2009) High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect 59:115–121. https://doi.org/10.1016/j.jinf.2009.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Huaringa AJ, Francis WH (2019) Outcome of invasive mechanical ventilation in cancer patients: Intubate or not to intubate a patient with cancer. J Crit Care 50:87–91. https://doi.org/10.1016/j.jcrc.2018.11.014

    Article  PubMed  Google Scholar 

  5. Zanini M, Nery RM, Buhler RP et al (2016) Preoperative maximal expiratory pressure is associated with duration of invasive mechanical ventilation after cardiac surgery: an observational study. Heart Lung 45:244–248. https://doi.org/10.1016/j.hrtlng.2016.01.003

    Article  PubMed  Google Scholar 

  6. Vallabhajosyula S, Dunlay SM, Kashani K et al (2019) Temporal trends and outcomes of prolonged invasive mechanical ventilation and tracheostomy use in acute myocardial infarction with cardiogenic shock in the United States. Int J Cardiol 285:6–10. https://doi.org/10.1016/j.ijcard.2019.03.008

    Article  PubMed  Google Scholar 

  7. Cheung JC-H, Ho LT, Cheng JV et al (2020) Staff safety during emergency airway management for COVID-19 in Hong Kong. Lancet Respir Med 8:e19. https://doi.org/10.1016/S2213-2600(20)30084-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Miraflor E, Chuang K, Miranda MA et al (2011) Timing is everything: delayed intubation is associated with increased mortality in initially stable trauma patients. J Surg Res 170:286–290. https://doi.org/10.1016/j.jss.2011.03.044

    Article  PubMed  Google Scholar 

  9. Hyland SL, Faltys M, Hüser M et al (2020) Early prediction of circulatory failure in the intensive care unit using machine learning. Nat Med 26:364–373. https://doi.org/10.1038/s41591-020-0789-4

    Article  PubMed  CAS  Google Scholar 

  10. Shehab M, Abualigah L, Shambour Q et al (2022) Machine learning in medical applications: a review of state-of-the-art methods. Comput Biol Med 145:105458. https://doi.org/10.1016/j.compbiomed.2022.105458

    Article  PubMed  Google Scholar 

  11. Parreco J, Hidalgo A, Parks JJ et al (2018) Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement. J Surg Res 228:179–187. https://doi.org/10.1016/j.jss.2018.03.028

    Article  PubMed  Google Scholar 

  12. Siu BMK, Kwak GH, Ling L, Hui P (2020) Predicting the need for intubation in the first 24 h after critical care admission using machine learning approaches. Sci Rep 10:20931. https://doi.org/10.1038/s41598-020-77893-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bendavid I, Statlender L, Shvartser L et al (2022) A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19. Sci Rep 12:10573. https://doi.org/10.1038/s41598-022-14758-x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Osawa EA, Maciel AT (2022) An algorithm to predict the need for invasive mechanical ventilation in hospitalized COVID-19 patients: the experience in Sao Paulo. Acute Crit Care 37:580–591. https://doi.org/10.4266/acc.2022.00283

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nemati S, Holder A, Razmi F et al (2018) An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med 46:547–553. https://doi.org/10.1097/CCM.0000000000002936

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuzniewicz MW, Vasilevskis EE, Lane R et al (2008) Variation in ICU risk-adjusted mortality: impact of methods of assessment and potential confounders. Chest 133:1319–1327. https://doi.org/10.1378/chest.07-3061

    Article  PubMed  Google Scholar 

  17. Johnson AEW, Pollard TJ, Shen L et al (2016) MIMIC-III, a freely accessible critical care database. Sci Data 3:160035. https://doi.org/10.1038/sdata.2016.35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Thoral PJ, Peppink JM, Driessen RH et al (2021) Sharing ICU patient data responsibly under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: the Amsterdam University Medical Centers Database (AmsterdamUMCdb) example. Crit Care Med 49:e563–e577. https://doi.org/10.1097/CCM.0000000000004916

    Article  PubMed  PubMed Central  Google Scholar 

  19. (2022) Deep learning and data augmentation based data imputation for structural health monitoring system in multi-sensor damaged state. Measurement 196:111206. https://doi.org/10.1016/j.measurement.2022.111206

  20. Ke G, Meng Q, Finley T et al (2017) LightGBM: a highly efficient gradient boosting decision tree. Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc, Red Hook, NY, USA, pp 3149–3157

    Google Scholar 

  21. Subha Ramakrishnan M, Ganapathy N (2022) Extreme gradient boosting based improved classification of blood-brain-barrier drugs. Stud Health Technol Inform 294:872–873. https://doi.org/10.3233/SHTI220612

    Article  PubMed  Google Scholar 

  22. Zhang P-B, Yang Z-X (2018) A novel AdaBoost framework with robust threshold and structural optimization. IEEE Trans Cybern 48:64–76. https://doi.org/10.1109/TCYB.2016.2623900

    Article  PubMed  Google Scholar 

  23. Svetnik V, Liaw A, Tong C et al (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958. https://doi.org/10.1021/ci034160g

    Article  PubMed  CAS  Google Scholar 

  24. Nouraei Sa. S, Huys QJM, Chatrath P et al (2007) Screening patients with sensorineural hearing loss for vestibular schwannoma using a Bayesian classifier. Clin Otolaryngol 32:248–254. https://doi.org/10.1111/j.1365-2273.2007.01460.x

    Article  PubMed  Google Scholar 

  25. Lippmann R (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4:4–22. https://doi.org/10.1109/MASSP.1987.1165576

    Article  Google Scholar 

  26. Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35:352–359. https://doi.org/10.1016/s1532-0464(03)00034-0

    Article  PubMed  Google Scholar 

  27. Ferguson ND, Fan E, Camporota L et al (2012) The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 38:1573–1582. https://doi.org/10.1007/s00134-012-2682-1

    Article  PubMed  Google Scholar 

  28. Thomas NJ, Shaffer ML, Willson DF et al (2010) Defining acute lung disease in children with the oxygenation saturation index. Pediatr Crit Care Med 11:12–17. https://doi.org/10.1097/PCC.0b013e3181b0653d

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang G, Xu J, Wang H et al (2022) An interpretable deep learning algorithm for dynamic early warning of posttraumatic hemorrhagic shock based on noninvasive parameter. Biomed Signal Process Control 77:103779. https://doi.org/10.1016/j.bspc.2022.103779

    Article  Google Scholar 

  30. Gepperth A, Hammer B (2016) Incremental learning algorithms and applications. In: European symposium on artificial neural networks (ESANN). Bruges, Belgium. https://pub.uni-bielefeld.de/record/2909368

  31. Jiao Y, Du P (2016) Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant Biol 4:320–330. https://doi.org/10.1007/s40484-016-0081-2

    Article  Google Scholar 

  32. Gupta V, Mittal M (2019) QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J Inst Eng India Ser B 100:489–497. https://doi.org/10.1007/s40031-019-00398-9

    Article  Google Scholar 

  33. Gupta V, Mittal M (2020) Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J Inst Eng India Ser B 101:451–461. https://doi.org/10.1007/s40031-020-00488-z

    Article  Google Scholar 

  34. Gupta V, Mittal M (2020) Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert transform and Burg method. J Inst Eng India Ser B 101:23–34. https://doi.org/10.1007/s40031-020-00423-2

    Article  Google Scholar 

  35. Sánchez-Cifo MÁ, Montero F, Lopez MT (2023) A methodology for emotional intelligence testing in elderly people with low-cost EEG and PPG devices. J Ambient Intell Human Comput 14:2351–2367. https://doi.org/10.1007/s12652-022-04490-9

    Article  Google Scholar 

  36. Chen M, Hernández A (2022) Towards an explainable model for sepsis detection based on sensitivity analysis. IRBM 43:75–86. https://doi.org/10.1016/j.irbm.2021.05.006

    Article  Google Scholar 

  37. Gupta V, He B, Sethi SP A Simplistic and novel technique for ECG signal pre-processing. IETE J Res. https://doi.org/10.1080/03772063.2022.2135622

  38. Gupta V, Kanungo A, Kumar P et al (2023) A design of bat-based optimized deep learning model for EEG signal analysis. Multimed Tools Appl 82:45367–45387. https://doi.org/10.1007/s11042-023-15462-2

    Article  Google Scholar 

  39. Breslow MDMJ, PharmD OB (2012) Severity scoring in the critically ill: part 2: maximizing value from outcome prediction scoring systems. Chest 141:518–527. https://doi.org/10.1378/chest.11-0331

    Article  PubMed  Google Scholar 

  40. Schwager E, Nabian M, Liu X, et al Machine learning modelling for predicting the utilization of invasive and non-invasive ventilation throughout the ICU duration. Healthcare Technology Letters n/a: https://doi.org/10.1049/htl2.12081

  41. Caleb W. PhD H, Gari D. PhD C, Andrew T. MD R Clinician blood pressure documentation of stable intensive care patients: an intelligent archiving agent has a higher association with future hypotension. https://yc.mlpla.mil.cn/s/com/ovid/oce/G.https/journals/aaprac/201105000/00003246-201105000-00012. Accessed 20 Mar 2024

  42. Smith J a.L, Jennings KP, Anderson EA et al (2004) Reducing call-to-needle times: the critical role of pre-hospital thrombolysis. QJM 97:655–661. https://doi.org/10.1093/qjmed/hch111

    Article  PubMed  CAS  Google Scholar 

  43. GhoshRoy D, Alvi PA, Santosh KC (2023) Unboxing industry-standard AI models for male fertility prediction with SHAP. Healthcare 11:929. https://doi.org/10.3390/healthcare11070929

    Article  PubMed  PubMed Central  Google Scholar 

  44. GhoshRoy D, Alvi PA, Santosh KC (2023) AI tools for assessing human fertility using risk factors: a state-of-the-art review. J Med Syst 47:91. https://doi.org/10.1007/s10916-023-01983-8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Xie, Q., Wang, C. et al. Intelligent alert system for predicting invasive mechanical ventilation needs via noninvasive parameters: employing an integrated machine learning method with integration of multicenter databases. Med Biol Eng Comput 62, 3445–3458 (2024). https://doi.org/10.1007/s11517-024-03143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03143-7

Keywords