Skip to main content

Advertisement

Log in

A depth analysis of recent innovations in non-invasive techniques using artificial intelligence approach for cancer prediction

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The fight against cancer, a relentless global health crisis, emphasizes the urgency for efficient and automated early detection methods. To address this critical need, this review assesses recent advances in non-invasive cancer prediction techniques, comparing conventional machine learning (CML) and deep neural networks (DNNs). Focusing on these seven major cancers, we analyze 310 publications spanning the years 2018 to 2024, focusing on detection accuracy as the key metric to identify the most effective predictive models, highlighting critical gaps in current methodologies, and suggesting directions for future research. We further delved into factors like datasets, features, and modalities to gain a comprehensive understanding of each approach’s performance. Separate review tables for each cancer type and approach facilitated comparisons between top performers (accuracy exceeding 99%) and low performers (65.83 to 85.8%). Our exploration of public databases and commonly used classifiers revealed that optimal combinations of features, datasets, and models can achieve up to 100% accuracy for both CML and DNN. However, significant variations in accuracy (up to 35%) were observed, particularly when optimization was lacking. Notably, colorectal cancer exhibited the lowest accuracy (DNN 69%, CML 65.83%). A five-point comparative analysis (best/worst models, performance gap, average accuracy, and research trends) revealed that while DNN research is gaining momentum, CML approaches remain competitive, even outperforming DNN in some cases. This study presents an in-depth comparative analysis of CML and DNN techniques for cancer detection. This knowledge can inform future research directions and contribute to the development of increasingly accurate and reliable cancer detection tools.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Faguet GB (2015) A brief history of cancer: age-old milestones underlying our current knowledge database. Int J Cancer 136:2022–2036. https://doi.org/10.1002/ijc.29134

    Article  PubMed  CAS  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

    Article  PubMed  CAS  Google Scholar 

  3. Manhas J, Gupta RK, Roy PP (2022) A review on automated cancer detection in medical images using machine learning and deep learning based computational techniques: challenges and opportunities. Arch Computat Methods Eng 29:2893–2933. https://doi.org/10.1007/s11831-021-09676-6

    Article  Google Scholar 

  4. World Health Organization Global Cancer Observatory Available online: https://gco.iarc.fr/ (accessed on 19 May 2023)

  5. GCO - SURVCAN Available online: https://gco.iarc.fr/survival/survcan/dataviz/table (accessed on 9 June 2023)

  6. World Health Organization International Agency for Research on Cancer, The Global Cancer Observatory - All cancers, International Agency for Research on Cancer - WHO. 419 (2020) 199–200. https://gco.iarc.fr/today/home. Accessed 19 May 2023

  7. Ten Have H, do Céu Patrão Neve M (2021) Mistakes, Medical. Dictionary of global bioethics. Springer International Publishing, Cham, p 729. https://doi.org/10.1007/978-3-030-54161-3_358

    Chapter  Google Scholar 

  8. Rai HM (2023) Cancer detection and segmentation using machine learning and deep learning techniques: a review. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-16520-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rai HM, Yoo J (2023) A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics. J Cancer Res Clin Oncol. https://doi.org/10.1007/s00432-023-05216-w

    Article  PubMed  Google Scholar 

  10. Al-Fahoum A, Harb B (2013) A combined fractal and wavelet angiography image compression approach. Open Med Imaging J 7:9–18. https://doi.org/10.2174/1874347101307010009

    Article  Google Scholar 

  11. Al-Fahoum AS, Reza AM (2004) Perceptually tuned JPEG coder for echocardiac image compression. IEEE Trans Inf Technol Biomed 8:313–320. https://doi.org/10.1109/TITB.2004.832545

    Article  PubMed  Google Scholar 

  12. Al-Fohoum AS, Reza AM (2001) Combined edge crispiness and statistical differencing for deblocking JPEG compressed images. IEEE Trans Image Process 10:1288–1298. https://doi.org/10.1109/83.941853

    Article  PubMed  CAS  Google Scholar 

  13. Al-Fahoum AS, Jaber EB, Al-Jarrah MA (2014) Automated detection of lung cancer using statistical and morphological image processing techniques. J Biomed Graph Comput 4. https://doi.org/10.5430/jbgc.v4n2p33

  14. Park HJ, An BH, Joo SB, Kwon OW, Kim MY, Seo J (2022) Grasping time and pose selection for robotic prosthetic hand control using deep learning based object detection. Int J Control Autom Syst 20:3410–3417. https://doi.org/10.1007/s12555-021-0449-6

    Article  Google Scholar 

  15. Park J, Jung Y, Kim JH (2022) Multiclass classification fault diagnosis of multirotor UAVs utilizing a deep neural network. Int J Control Autom Syst 20:1316–1326. https://doi.org/10.1007/s12555-021-0729-1

    Article  Google Scholar 

  16. Son H, Lee B, Sung S (2021) Synthetic deep neural network design for LiDAR-inertial odometry based on CNN and LSTM. Int J Control Autom Syst 19:2859–2868. https://doi.org/10.1007/s12555-020-0443-2

    Article  Google Scholar 

  17. Ayyasamy T, Nirmala S, Saravanakumar A (2022) An efficient autolanding control model using modified black widow optimization based hybrid deep neural network. Int J Control Autom Syst 20:627–636. https://doi.org/10.1007/s12555-020-0623-2

    Article  Google Scholar 

  18. Rai HM, Chatterjee K, Dashkevich S (2021) Automatic and accurate abnormality detection from brain MR images using a novel hybrid UnetResNext-50 deep CNN model. Biomed Signal Process Control 66:102477. https://doi.org/10.1016/j.bspc.2021.102477

    Article  Google Scholar 

  19. Sattar NY, Kausar Z, Usama SA, Farooq U, Khan US (2021) EMG based control of transhumeral prosthesis using machine learning algorithms. Int J Control Autom Syst 19:3522–3532. https://doi.org/10.1007/s12555-019-1058-5

    Article  Google Scholar 

  20. Masud M, Sikder N, Nahid AA, Bairagi AK, AlZain MA (2021) A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors (Switzerland) 21:1–21. https://doi.org/10.3390/s21030748

    Article  Google Scholar 

  21. Bębas E, Borowska M, Derlatka M, Oczeretko E, Hładuński M, Szumowski P, Mojsak M (2021) Machine-learning-based classification of the histological subtype of non-small-cell lung cancer using MRI texture analysis. Biomed Signal Process Control 66:102446. https://doi.org/10.1016/j.bspc.2021.102446

    Article  Google Scholar 

  22. Utaminingrum F, Somawirata IK, Mayena S, Septiarini A, Shih TK (2023) Analysis of kernel performance in support vector machine using seven features extraction for obstacle detection. Int J Control Autom Syst 21:281–291. https://doi.org/10.1007/s12555-021-0702-z

    Article  Google Scholar 

  23. Banasode P, Patil M, Ammanagi N (2021) A melanoma skin cancer detection using machine learning technique: support vector machine. IOP Conference Series: Materials Science and Engineering 1065(1):012039. https://doi.org/10.1088/1757-899X/1065/1/012039

  24. Shim DS, Shim J (2023) A modified stochastic gradient descent optimization algorithm with random learning rate for machine learning and deep learning. Int J Control Autom Syst 21:3825–3831. https://doi.org/10.1007/s12555-022-0947-1

    Article  Google Scholar 

  25. Li W, Yue M, Shangguan J, Jin Y (2023) Navigation of mobile robots based on deep reinforcement learning: reward function optimization and knowledge transfer. Int J Control Autom Syst 21:563–574. https://doi.org/10.1007/s12555-021-0642-7

    Article  Google Scholar 

  26. Zhang T, Liu Z, Pu Z, Yi J, Liang Y, Zhang D (2023) Robot subgoal-guided navigation in dynamic crowded environments with hierarchical deep reinforcement learning. Int J Control Autom Syst 21:2350–2362. https://doi.org/10.1007/s12555-022-0171-z

    Article  Google Scholar 

  27. Faruqui N, Yousuf MA, Whaiduzzaman M, Azad AKM, Barros A, Moni MA (2021) LungNet: a hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput Biol Med 139:104961. https://doi.org/10.1016/j.compbiomed.2021.104961

    Article  PubMed  Google Scholar 

  28. Alsheikhy AA, Said Y, Shawly T, Alzahrani AK, Lahza H (2023) A CAD system for lung cancer detection using hybrid deep learning techniques. Diagnostics 13. https://doi.org/10.3390/diagnostics13061174

  29. Wang S, Du S, Atangana A, Liu A, Lu Z (2018) Application of stationary wavelet entropy in pathological brain detection. Multimed Tools Appl 77:3701–3714. https://doi.org/10.1007/s11042-016-3401-7

    Article  Google Scholar 

  30. Bourennane M, Naimi H, Mohamed E (2024) Deep feature extraction with cubic-SVM for classification of brain tumor. Stud Eng Exact Sci 5:19–35. https://doi.org/10.54021/seesv5n1-002

    Article  Google Scholar 

  31. Vankdothu R, Hameed MA (2022) Brain tumor segmentation of MR images using SVM and fuzzy classifier in machine learning. Meas: Sensors 24:100440. https://doi.org/10.1016/j.measen.2022.100440

    Article  Google Scholar 

  32. Malarvizhi AB, Mofika A, Monapreetha M, Arunnagiri AM (2022) Brain tumour classification using machine learning algorithm. J Phys Conf Ser 2318. https://doi.org/10.1088/1742-6596/2318/1/012042

  33. Amin J, Sharif M, Yasmin M, Fernandes SL (2018) Big data analysis for brain tumor detection : deep convolutional neural networks. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2018.04.065

    Article  Google Scholar 

  34. Yousaf F, Iqbal S, Fatima N, Kousar T, Shafry Mohd Rahim M (2023) Multi-class disease detection using deep learning and human brain medical imaging. Biomed Signal Process Control 85. https://doi.org/10.1016/j.bspc.2023.104875

  35. Krishnapriya S, Karuna Y (2023) Pre-trained deep learning models for brain MRI image classification. Front Hum Neurosci 17 https://doi.org/10.3389/fnhum.2023.1150120

  36. Shahzadi I, Tang TB, Meriadeau F, Quyyum A (2018) CNN-LSTM: Cascaded Framework For Brain Tumour Classification. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp 633–637. https://doi.org/10.1109/IECBES.2018.8626704

  37. Shim SO, Alkinani MH, Hussain L, Aziz W (2022) Feature ranking importance from multimodal radiomic texture features using machine learning paradigm: a biomarker to predict the lung cancer. Big Data Res 29:100331

    Article  Google Scholar 

  38. Li L, Yang J, Por LY, Khan MS, Hamdaoui R, Hussain L, Iqbal Z, Rotaru IM, Dobrotă D, Aldrdery M et al (2024) Enhancing lung cancer detection through hybrid features and machine learning hyperparameters optimization techniques. Heliyon 10:e26192. https://doi.org/10.1016/j.heliyon.2024.e26192

    Article  PubMed  PubMed Central  Google Scholar 

  39. Deepapriya BS, Kumar P, Nandakumar G, Gnanavel S, Padmanaban R, Anbarasan AK, Meena K (2023) Performance evaluation of deep learning techniques for lung cancer prediction. Soft comput 27:9191–9198. https://doi.org/10.1007/s00500-023-08313-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chang JE, Lee DS, Ban SW, Oh J, Jung MY, Kim SH, Park SJ, Persaud K, Jheon S (2018) Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sens Actuators B Chem 255:800–807. https://doi.org/10.1016/j.snb.2017.08.057

    Article  CAS  Google Scholar 

  41. Zhou H, Dong D, Chen B, Fang M, Cheng Y, Gan Y, Zhang R, Zhang L, Zang Y, Liu Z et al (2018) Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl Oncol 11:31–36. https://doi.org/10.1016/j.tranon.2017.10.010

    Article  PubMed  Google Scholar 

  42. El-Ghany SA, Azad M, Elmogy M (2023) Robustness fine-tuning deep learning model for cancers diagnosis based on histopathology image analysis. Diagnostics 13. https://doi.org/10.3390/diagnostics13040699

  43. Heidari A, Javaheri D, Toumaj S, Navimipour NJ, Rezaei M, Unal M (2023) A new lung cancer detection method based on the chest CT images using federated learning and blockchain systems. Artif Intell Med 141:102572. https://doi.org/10.1016/j.artmed.2023.102572

    Article  PubMed  Google Scholar 

  44. Ausawalaithong W, Thirach A, Marukatat S, Wilaiprasitporn T (2019) Automatic lung cancer prediction from chest X-ray images using the deep learning approach. BMEiCON 2018 - 11th Biomed Eng Int Conf. https://doi.org/10.1109/BMEiCON.2018.8609997

  45. Wahba MA, Ashour AS, Guo Y, Napoleon SA, Abd MM (2018) Computer methods and programs in biomedicine a novel cumulative level difference mean based GLDM and modified ABCD features ranked using eigenvector centrality approach for four skin lesion types classification. Comput Methods Programs Biomed 165:163–174. https://doi.org/10.1016/j.cmpb.2018.08.009

    Article  PubMed  Google Scholar 

  46. Amin J, Sharif A, Gul N, Anjum MA, Nisar MW, Azam F, Bukhari SAC (2020) Integrated design of deep features fusion for localization and classification of skin cancer. Pattern Recognit Lett 131:63–70. https://doi.org/10.1016/j.patrec.2019.11.042

    Article  Google Scholar 

  47. Iqtidar K, Iqtidar A, Ali W, Aziz S, Khan MU (2020) Image pattern analysis towards classification of skin cancer through dermoscopic images. Proc - 2020 1st Int Conf Smart Syst Emerg Technol SMART-TECH 208–213. https://doi.org/10.1109/SMART-TECH49988.2020.00055 (2020)

  48. Upadhyay PK, Chandra S (2022) An improved bag of dense features for skin lesion recognition. J King Saud Univ - Comput Inf Sci 34:520–525. https://doi.org/10.1016/j.jksuci.2019.02.007

    Article  Google Scholar 

  49. Bhargavi S, Sowmya V, Syama S, Lekshmi S (2022) Skin cancer detection using machine learning. 2022 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), pp 119–124. https://doi.org/10.1109/CENTCON56610.2022.10051495

  50. Bi D, Zhu D, Sheykhahmad FR, Qiao M (2021) Computer-aided skin cancer diagnosis based on a new meta-heuristic algorithm combined with support vector method. Biomed Signal Process Control 68:102631. https://doi.org/10.1016/j.bspc.2021.102631

    Article  Google Scholar 

  51. Lu X, Firoozeh Abolhasani Zadeh YA (2022) Deep learning-based classification for melanoma detection using XceptionNet. J Healthc Eng https://doi.org/10.1155/2022/2196096 (2022)

  52. Malibari AA, Alzahrani JS, Eltahir MM, Malik V, Obayya M, Al Duhayyim M, Lira Neto AV, de Albuquerque VHC (2022) Optimal deep neural network-driven computer aided diagnosis model for skin cancer. Comput Electr Eng 103. https://doi.org/10.1016/j.compeleceng.2022.108318

  53. Patil SM, Rajguru BS, Mahadik RS, Pawar OP (2022) Melanoma skin cancer disease detection using convolutional neural network. 2022 3rd International Conference for Emerging Technology, INCET 2022. https://doi.org/10.1109/INCET54531.2022.9825381

  54. Dai X, Spasic I, Meyer B, Chapman S, Andres F (2019) Machine learning on mobile: an on-device inference app for skin cancer detection. 2019 4th Int Conf Fog Mob Edge Comput FMEC 301–305. https://doi.org/10.1109/FMEC.2019.8795362 (2019)

  55. Neema M, Nair AS, Joy A, Menon AP, Haris A (2020) Skin lesion/cancer detection using deep learning. Int J Appl Eng Res 15:11–17

    Google Scholar 

  56. Li Y, Shen L (2018) Skin lesion analysis towards melanoma detection using deep learning network. Sensors (Switzerland) 18:1–16. https://doi.org/10.3390/s18020556

    Article  Google Scholar 

  57. Mohanty F, Rup S, Dash B, Majhi B, Swamy MNS (2020) An improved scheme for digital mammogram classification using weighted chaotic salp swarm algorithm-based kernel extreme learning machine. Appl Soft Comput J 91:106266. https://doi.org/10.1016/j.asoc.2020.106266

    Article  Google Scholar 

  58. Vo DM, Nguyen NQ, Lee SW (2019) Classification of breast cancer histology images using incremental boosting convolution networks. Inf Sci (N Y) 482:123–138. https://doi.org/10.1016/j.ins.2018.12.089

    Article  Google Scholar 

  59. Das R, Kaur K, Walia E (2022) Feature generalization for breast cancer detection in histopathological images. Interdiscip Sci 14:566–581. https://doi.org/10.1007/s12539-022-00515-1

    Article  PubMed  CAS  Google Scholar 

  60. Qasem A, Sheikh Abdullah SNH, Sahran S, Albashish D, Goudarzi S, Arasaratnam S (2021) An improved ensemble pruning for mammogram classification using modified bees algorithm. Neural Comput Appl 34:10093–10116. https://doi.org/10.1007/s00521-022-06995-y

    Article  Google Scholar 

  61. Alfian G, Syafrudin M, Fahrurrozi I, Fitriyani NL, Atmaji FTD, Widodo T, Bahiyah N, Benes F, Rhee J (2022) Predicting breast cancer from risk factors using SVM and extra-trees-based feature selection method. Computers 11. https://doi.org/10.3390/computers11090136

  62. Kumar KA, Satheesha TY, Salvador BBL, Mithileysh S, Ahmed ST (2023) Augmented Intelligence Enabled Deep Neural Networking (AuDNN) framework for skin cancer classification and prediction using multi-dimensional datasets on industrial IoT standards. Microprocess Microsyst 97:104755. https://doi.org/10.1016/j.micpro.2023.104755

    Article  Google Scholar 

  63. Arooj S, Atta-ur-Rahman, Zubair M, Khan MF, Alissa K, Khan MA, Mosavi A (2022) Breast cancer detection and classification empowered with transfer learning. Front Public Health 10:1–18. https://doi.org/10.3389/fpubh.2022.924432

    Article  Google Scholar 

  64. Boudouh SS, Bouakkaz M (2022) Breast cancer: using deep transfer learning techniques AlexNet convolutional neural network for breast tumor detection in mammography images. 2022 7th International Conference on Image and Signal Processing and Their Applications (ISPA), pp 1–7. https://doi.org/10.1109/ISPA54004.2022.9786351

  65. Dewangan KK, Dewangan DK, Sahu SP, Janghel R (2022) Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimed Tools Appl 81:13935–13960. https://doi.org/10.1007/s11042-022-12385-2

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ha R, Mutasa S, Karcich J, Gupta N, Pascual Van Sant E, Nemer J, Sun M, Chang P, Liu MZ, Jambawalikar S (2019) Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm. J Digit Imaging 32:276–282. https://doi.org/10.1007/s10278-019-00179-2

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fang Y, Zhao J, Hu L, Ying X, Pan Y, Wang X (2019) Image classification toward breast cancer using deeply-learned quality features. J Vis Commun Image Represent 64. https://doi.org/10.1016/j.jvcir.2019.102609

  68. Zhou J, Luo LY, Dou Q, Chen H, Chen C, Li GJ, Jiang ZF, Heng PA (2019) Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. J Magn Reson Imaging 50:1144–1151. https://doi.org/10.1002/jmri.26721

    Article  PubMed  Google Scholar 

  69. Chen T, Li M, Gu Y, Zhang Y, Yang S, Wei C, Wu J, Li X, Zhao W, Shen J (2019) Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS V2. J Magn Reson Imaging 49:875–884. https://doi.org/10.1002/jmri.26243

    Article  PubMed  Google Scholar 

  70. Salama WM, Aly MH (2021) Prostate cancer detection based on deep convolutional neural networks and support vector machines: a novel concern level analysis. Multimed Tools Appl 80:24995–25007. https://doi.org/10.1007/s11042-021-10849-5

    Article  Google Scholar 

  71. Koc M, Sut SK, Serhatlioglu I, Baygin M, Tuncer T (2022) Automatic prostate cancer detection model based on ensemble VGGNet feature generation and NCA feature selection using magnetic resonance images. Multimed Tools Appl 81:7125–7144. https://doi.org/10.1007/s11042-022-11906-3

    Article  Google Scholar 

  72. Huang X, Chen M, Liu P, Du Y (2020) Texture feature-based classification on transrectal ultrasound image for prostatic cancer detection. Comput Math Methods Med 2020:1–9. https://doi.org/10.1155/2020/7359375

    Article  Google Scholar 

  73. Qi X, Wang K, Feng B, Sun X, Yang J, Hu Z, Zhang M, Lv C, Jin L, Zhou L et al (2023) Comparison of machine learning models based on multi-parametric magnetic resonance imaging and ultrasound videos for the prediction of prostate cancer. Front Oncol 13:1–12. https://doi.org/10.3389/fonc.2023.1157949

    Article  Google Scholar 

  74. Ellmann S, Schlicht M, Dietzel M, Janka R, Hammon M, Saake M, Ganslandt T, Hartmann A, Kunath F, Wullich B et al (2020) Computer-aided diagnosis in multiparametric MRI of the prostate: an open-access online tool for lesion classification with high accuracy. Cancers (Basel) 12:1–15. https://doi.org/10.3390/cancers12092366

    Article  Google Scholar 

  75. Dinesh MG, Bacanin N, Askar SS, Abouhawwash M (2023) Diagnostic ability of deep learning in detection of pancreatic tumour. Sci Rep 13. https://doi.org/10.1038/s41598-023-36886-8

  76. Ali AM, Mohammed AA (2022) Improving classification accuracy for prostate cancer using noise removal filter and deep learning technique. Multimed Tools Appl 81:8653–8669. https://doi.org/10.1007/s11042-022-12102-z

    Article  Google Scholar 

  77. Tsuneki M, Abe M, Kanavati F (2022) A deep learning model for prostate adenocarcinoma classification in needle biopsy whole-slide images using transfer learning. Diagnostics 12. https://doi.org/10.3390/diagnostics12030768

  78. Li D, Han X, Gao J, Zhang Q, Yang H, Liao S, Guo H, Zhang B (2022) Deep learning in prostate cancer diagnosis using multiparametric magnetic resonance imaging with whole-mount histopathology referenced delineations. Front Med (Lausanne) 8. https://doi.org/10.3389/fmed.2021.810995

  79. Arif M, Schoots IG, Castillo Tovar J, Bangma CH, Krestin GP, Roobol MJ, Niessen W, Veenland JF (2020) Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Eur Radiol 30:6582–6592. https://doi.org/10.1007/s00330-020-07008-z

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xiang J, Wang X, Wang X, Zhang J, Yang S, Yang W, Han X, Liu Y (2023) Automatic diagnosis and grading of prostate cancer with weakly supervised learning on whole slide images. Comput Biol Med 152:106340. https://doi.org/10.1016/j.compbiomed.2022.106340

    Article  PubMed  Google Scholar 

  81. Talukder MA, Islam MM, Uddin MA, Akhter A, Hasan KF, Moni MA (2022) Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning. Expert Syst Appl 205. https://doi.org/10.1016/j.eswa.2022.117695

  82. Su Y, Tian X, Gao R, Guo W, Chen C, Chen C, Jia D, Li H, Lv X (2022) Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Comput Biol Med 145:105409. https://doi.org/10.1016/j.compbiomed.2022.105409

    Article  PubMed  Google Scholar 

  83. Khazaee Fadafen M, Rezaee K (2023) Ensemble-based multi-tissue classification approach of colorectal cancer histology images using a novel hybrid deep learning framework. Sci Rep 13:8823. https://doi.org/10.1038/s41598-023-35431-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Qarmiche N, Chrifi Alaoui M, El Kinany K, El Rhazi K, Chaoui N (2022) Soft-voting colorectal cancer risk prediction based on EHLI components. Inform Med Unlocked 33:101070. https://doi.org/10.1016/j.imu.2022.101070

    Article  Google Scholar 

  85. Ying M, Pan J, Lu G, Zhou S, Fu J, Wang Q, Wang L, Hu B, Wei Y, Shen J (2022) Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer. BMC Cancer 22:1–13. https://doi.org/10.1186/s12885-022-09584-3

    Article  CAS  Google Scholar 

  86. Park J-H, Lee Y, Kwon H, Park WJ, Uk Park S, Sym S, Baek J (2020) An ensemble algorithm model for the diagnosis of colorectal cancer based on machine learning. Eur J Surg Oncol 46:e74–e75. https://doi.org/10.1016/j.ejso.2019.11.167

    Article  Google Scholar 

  87. Ben Hamida A, Devanne M, Weber J, Truntzer C, Derangère V, Ghiringhelli F, Forestier G, Wemmert C (2021) Deep learning for colon cancer histopathological images analysis. Comput Biol Med 136. https://doi.org/10.1016/j.compbiomed.2021.104730

  88. Dabass M, Dabass J, Vashisth S, Vig R (2023) A hybrid U-Net model with attention and advanced convolutional learning modules for simultaneous gland segmentation and cancer grade prediction in colorectal histopathological images. Intell Based Med 7:100094. https://doi.org/10.1016/j.ibmed.2023.100094

    Article  Google Scholar 

  89. Srivastava G, Chauhan A, Pradhan N (2023) CJT-DEO: Condorcet’s jury theorem and differential evolution optimization based ensemble of deep neural networks for pulmonary and colorectal cancer classification. Appl Soft Comput 132:109872. https://doi.org/10.1016/j.asoc.2022.109872

    Article  Google Scholar 

  90. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J (2018) Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-21758-3

    Article  CAS  Google Scholar 

  91. Brockmoeller S, Echle A, Ghaffari Laleh N, Eiholm S, Malmstrøm ML, Plato Kuhlmann T, Levic K, Grabsch HI, West NP, Saldanha OL et al (2022) Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J Pathol 256:269–281. https://doi.org/10.1002/path.5831

    Article  PubMed  CAS  Google Scholar 

  92. Palak, Mangotra H, Goel N (2023) Effect of selection bias on automatic colonoscopy polyp detection. Biomed Signal Process Control 85:104915. https://doi.org/10.1016/j.bspc.2023.104915

    Article  Google Scholar 

  93. Emam Atteia G (2023) Latent space representational learning of deep features for acute lymphoblastic leukemia diagnosis. Comput Syst Sci Eng 45:361–376. https://doi.org/10.32604/csse.2023.029597

    Article  Google Scholar 

  94. Liu K, Hu J (2022) Classification of acute myeloid leukemia M1 and M2 subtypes using machine learning. Comput Biol Med 147:105741. https://doi.org/10.1016/j.compbiomed.2022.105741

    Article  PubMed  CAS  Google Scholar 

  95. Mishra S, Majhi B, Sa PK (2019) Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control 47:303–311. https://doi.org/10.1016/j.bspc.2018.08.012

    Article  Google Scholar 

  96. Boldú L, Merino A, Alférez S, Molina A, Acevedo A, Rodellar J (2019) Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. J Clin Pathol 72:755–761. https://doi.org/10.1136/jclinpath-2019-205949

    Article  PubMed  Google Scholar 

  97. Loey M, Naman M, Zayed H (2020) Deep transfer learning in diagnosing leukemia in blood cells. Computers 9. https://doi.org/10.3390/computers9020029

  98. Talaat FM, Gamel SA (2023) Machine learning in detection and classification of leukemia using C-NMC_leukemia. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-15923-8

  99. Bibi N, Sikandar M, Ud Din I, Almogren A, Ali S (2020) IoMT-based automated detection and classification of leukemia using deep learning. J Healthc Eng 2020:1–12. https://doi.org/10.1155/2020/6648574

    Article  Google Scholar 

  100. Depto DS, Rizvee MM, Rahman A, Zunair H, Rahman MS, Mahdy MRC (2023) Quantifying imbalanced classification methods for leukemia detection. Comput Biol Med 152:106372. https://doi.org/10.1016/j.compbiomed.2022.106372

    Article  PubMed  CAS  Google Scholar 

  101. Abhishek A, Jha RK, Sinha R, Jha K (2023) Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by Grad-CAM visualization. Biomed Signal Process Control 83:104722. https://doi.org/10.1016/j.bspc.2023.104722

    Article  Google Scholar 

  102. Ahmed N, Yigit A, Isik Z, Alpkocak A (2019) Identification of leukemia subtypes from microscopic images using convolutional neural network. Diagnostics 9. https://doi.org/10.3390/diagnostics9030104

  103. Bao W, Yang B (2024) Protein acetylation sites with complex-valued polynomial model. Front Comput Sci 18:183904. https://doi.org/10.1007/s11704-023-2640-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Mohan Rai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11517_2024_3158_MOESM1_ESM.docx

Supplementary file1 Appendix A: This appendix contains all the tables used in this study. Each table is referenced in the main text as Table A1, Table A2, and so on. (DOCX 1.28 MB)

11517_2024_3158_MOESM2_ESM.docx

Supplementary file2 Appendix B: Appendix B contains selected figures, cited in the main text as Figure B1, Figure B2, and so on. Additionally, this appendix provides a brief description of “Section 3.5 Classifiers,” covering the most commonly utilized conventional machine learning (CML) and deep learning (DL) classifiers. (DOCX 1284 KB)

11517_2024_3158_MOESM3_ESM.docx

Supplementary file3 Appendix C: This appendix focuses on a detailed analysis of the best and worst performing CML and DL classifiers across all cancer types explored in the study. (DOCX 50 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, H.M., Yoo, J. & Razaque, A. A depth analysis of recent innovations in non-invasive techniques using artificial intelligence approach for cancer prediction. Med Biol Eng Comput 62, 3555–3580 (2024). https://doi.org/10.1007/s11517-024-03158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03158-0

Keywords