Skip to main content
Log in

Development of a spinopelvic complex finite element model for quantitative analysis of the biomechanical response of patients with degenerative spondylolisthesis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Research on degenerative spondylolisthesis (DS) has focused primarily on the biomechanical responses of pathological segments, with few studies involving muscle modelling in simulated analysis, leading to an emphasis on the back muscles in physical therapy, neglecting the ventral muscles. The purpose of this study was to quantitatively analyse the biomechanical response of the spinopelvic complex and surrounding muscle groups in DS patients using integrative modelling. The findings may aid in the development of more comprehensive rehabilitation strategies for DS patients. Two new finite element spinopelvic complex models with detailed muscles for normal spine and DS spine (L4 forwards slippage) modelling were established and validated at multiple levels. Then, the spinopelvic position parameters including peak stress of the lumbar isthmic-cortical bone, intervertebral discs, and facet joints; peak strain of the ligaments; peak force of the muscles; and percentage difference in the range of motion were analysed and compared under flexion–extension (F-E), lateral bending (LB), and axial rotation (AR) loading conditions between the two models. Compared with the normal spine model, the DS spine model exhibited greater stress and strain in adjacent biological tissues. Stress at the L4/5 disc and facet joints under AR and LB conditions was approximately 6.6 times greater in the DS spine model than in the normal model, the posterior longitudinal ligament peak strain in the normal model was 1/10 of that in the DS model, and more high-stress areas were found in the DS model, with stress notably transferring forwards. Additionally, compared with the normal spine model, the DS model exhibited greater muscle tensile forces in the lumbosacral muscle groups during F-E and LB motions. The psoas muscle in the DS model was subjected to 23.2% greater tensile force than that in the normal model. These findings indicated that L4 anterior slippage and changes in lumbosacral-pelvic alignment affect the biomechanical response of muscles. In summary, the present work demonstrated a certain level of accuracy and validity of our models as well as the differences between the models. Alterations in spondylolisthesis and the accompanying overall imbalance in the spinopelvic complex result in increased loading response levels of the functional spinal units in DS patients, creating a vicious cycle that exacerbates the imbalance in the lumbosacral region. Therefore, clinicians are encouraged to propose specific exercises for the ventral muscles, such as the psoas group, to address spinopelvic imbalance and halt the progression of DS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Harrop JS, Hilibrand A, Mihalovich KE, Dettori JR, Chapman J (2014) Cost-effectiveness of surgical treatment for degenerative spondylolisthesis and spinal stenosis. Spine 39(22 Suppl 1):S75-85. https://doi.org/10.1097/brs.0000000000000545

    Article  PubMed  Google Scholar 

  2. Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W et al (2008) Expenditures and health status among adults with back and neck problems. JAMA 299(6):656–664. https://doi.org/10.1001/jama.299.6.656

    Article  PubMed  Google Scholar 

  3. Dagenais S, Caro J, Haldeman S (2008) A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J Off J North Am Spine Soc 8(1):8–20. https://doi.org/10.1016/j.spinee.2007.10.005

    Article  Google Scholar 

  4. Jones KE, Polly DW Jr (2019) Cost-effectiveness for surgical treatment of degenerative spondylolisthesis. Neurosurg Clin N Am 30(3):365–372. https://doi.org/10.1016/j.nec.2019.02.010

    Article  PubMed  Google Scholar 

  5. Koreckij TD, Fischgrund JS (2015) Degenerative spondylolisthesis. 28(7):236-41. https://doi.org/10.1097/bsd.0000000000000298

  6. Derman PB, Albert TJ (2017) Interbody fusion techniques in the surgical management of degenerative lumbar spondylolisthesis. Curr Rev Musculoskelet Med 10(4):530–538. https://doi.org/10.1007/s12178-017-9443-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Qin X, Sun K, Yin H, Chen X, Yang B et al (2022) Manipulation for degenerative lumbar spondylolisthesis: a systematic review of randomized controlled trials. J Tradit Chin Med Sci 9(2):121–127. https://doi.org/10.1016/j.jtcms.2022.02.001

    Article  Google Scholar 

  8. Aoki Y, Takahashi H, Nakajima A, Kubota G, Watanabe A, Nakajima T et al (2020) Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease. Sci Rep 10(1):6739. https://doi.org/10.1038/s41598-020-63784-0

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akkawi I, Zmerly H (2022) Degenerative spondylolisthesis: a narrative review. Acta bio-medica Atenei Parmensis 92(6):e2021313. https://doi.org/10.23750/abm.v92i6.10526

    Article  PubMed  PubMed Central  Google Scholar 

  10. Koslosky E, Gendelberg D (2020) Classification in brief: the Meyerding classification system of spondylolisthesis. Clin Orthop Relat Res 478(5):1125–1130. https://doi.org/10.1097/corr.0000000000001153

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramakrishna VAS, Chamoli U, Viglione LL, Tsafnat N, Diwan AD (2018) Mild (not severe) disc degeneration is implicated in the progression of bilateral L5 spondylolysis to spondylolisthesis. BMC Musculoskelet Disord 19(1):98. https://doi.org/10.1186/s12891-018-2011-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yaroub S, Hamandi SJ, Mohson K (2022) Kinematic analysis of L4–L5 spinal segment with spondylolysis and different types of grade 1 spondylolisthesis: a nonlinear finite element study. Acta Bioeng Biomech 24(2):177–186

    Article  PubMed  Google Scholar 

  13. Bashkuev M, Reitmaier S, Schmidt H (2020) Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J Biomech 102:109518. https://doi.org/10.1016/j.jbiomech.2019.109518

    Article  PubMed  Google Scholar 

  14. Ding H, Liao L, Yan P, Zhao X, Li M (2021) Three-dimensional finite element analysis of l4–5 degenerative lumbar disc traction under different pushing heights. J Healthc Eng 2021:1322397. https://doi.org/10.1155/2021/1322397

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oh SK, Chung SS, Lee CS (2009) Correlation of pelvic parameters with isthmic spondylolisthesis. Asian Spine J 3(1):21–26. https://doi.org/10.4184/asj.2009.3.1.21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gadkari A, Ghodke A, Jha A (2022) Correlation of pelvic incidence and pelvic parameters in lumbar spondylolisthesis. Surg Neurol Int 13:405. https://doi.org/10.25259/sni_545_2022

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu R, Niu WX, Wang ZP, Pei XL, He B, Zeng ZL et al (2018) The effect of muscle direction on the predictions of finite element model of human lumbar spine. Biomed Res Int 2018:4517471. https://doi.org/10.1155/2018/4517471

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu R, Niu WX, Zeng ZL, Tong JH, Zhen ZW, Zhou S et al (2017) The effects of muscle weakness on degenerative spondylolisthesis: a finite element study. Clin Biomech (Bristol Avon) 41:34–38. https://doi.org/10.1016/j.clinbiomech.2016.11.007

    Article  PubMed  Google Scholar 

  19. Vanti C, Ferrari S, Guccione AA, Pillastrini P (2021) Lumbar spondylolisthesis: state of the art on assessment and conservative treatment. Arch Physiother 11(1):19. https://doi.org/10.1186/s40945-021-00113-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sawa AGU, Lehrman JN, Crawford NR, Kelly BP (2020) Variations among human lumbar spine segments and their relationships to in vitro biomechanics: a retrospective analysis of 281 motion segments from 85 cadaveric spines. Int J Spine Surg 14(2):140–50. https://doi.org/10.14444/7021

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bruno AG, Broe KE, Zhang X, Samelson EJ, Meng CA, Manoharan R et al (2014) Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J Bone Mineral Res Off J Am Soc Bone Mineral Res 29(3):562–569. https://doi.org/10.1002/jbmr.2067

    Article  Google Scholar 

  22. Miller CA, Hwang SJ, Cotter MM, Vorperian HK (2021) Developmental morphology of the cervical vertebrae and the emergence of sexual dimorphism in size and shape: a computed tomography study. Anat Rec (Hoboken, NJ : 2007) 304(8):1692–708. https://doi.org/10.1002/ar.24559

    Article  Google Scholar 

  23. Zhu Z, Xu L, Zhu F, Jiang L, Wang Z, Liu Z et al (2014) Sagittal alignment of spine and pelvis in asymptomatic adults: norms in Chinese populations. Spine 39(1):E1-6. https://doi.org/10.1097/brs.0000000000000022

    Article  PubMed  Google Scholar 

  24. Zhou S, Sun Z, Li W, Zou D, Li W (2022) The pelvic incidence stratified sagittal spinopelvic alignment in asymptomatic Chinese population with different age groups. Glob Spine J 12(8):1821–1826. https://doi.org/10.1177/2192568221989647

    Article  Google Scholar 

  25. Lin RM, Jou IM, Yu CY (1992) Lumbar lordosis: normal adults. J Formos Med Assoc = Taiwan yi zhi 91(3):329–33

    PubMed  Google Scholar 

  26. Vleeming A, Schuenke MD, Masi AT, Carreiro JE, Danneels L, Willard FH (2012) The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. J Anat 221(6):537–567. https://doi.org/10.1111/j.1469-7580.2012.01564.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Woon JT, Stringer MD (2012) Clinical anatomy of the coccyx: a systematic review. Clinical anatomy (New York, NY) 25(2):158–167. https://doi.org/10.1002/ca.21216

    Article  Google Scholar 

  28. Mengoni M (2021) Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol 20(2):389–401. https://doi.org/10.1007/s10237-020-01403-7

    Article  PubMed  Google Scholar 

  29. Yao J, Dong B, Sun J, Liu JT, Liu F, Li XW et al (2020) Accuracy and reliability of computer-aided anatomical measurements for vertebral body and disc based on computed tomography scans. Orthop Surg 12(4):1182–1189. https://doi.org/10.1111/os.12729

    Article  PubMed  PubMed Central  Google Scholar 

  30. Palepu V, Rayaprolu SD, Nagaraja S (2019) Differences in trabecular bone, cortical shell, and endplate microstructure across the lumbar spine. Int J Spine Surg 13(4):361–70. https://doi.org/10.14444/6049

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Battié MC, Videman T (2012) A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 21(11):2316–2323. https://doi.org/10.1007/s00586-012-2415-8

    Article  Google Scholar 

  32. Inoue N, Orías AAE, Segami K (2020) Biomechanics of the lumbar facet joint. Spine Surg Relat Res 4(1):1–7. https://doi.org/10.22603/ssrr.2019-0017

    Article  PubMed  Google Scholar 

  33. Cappetti N, Naddeo A, Naddeo F, Solitro GF (2010) Influence of the disk geometry on different FEM models of the spine. 9th international symposium on Computer Methods in Biomechanics and Biomedical Engineering, Valencia (SPAIN). 24–7

  34. Panzer MB, Cronin DS (2009) C4–C5 segment finite element model development, validation, and load-sharing investigation. J Biomech 42(4):480–490. https://doi.org/10.1016/j.jbiomech.2008.11.036

    Article  PubMed  Google Scholar 

  35. Liang Z, Mo F, Zheng Z, Li Y, Tian Y, Jiang X et al (2022) Quantitative cervical spine injury responses in whiplash loading with a numerical method of natural neural reflex consideration. Comput Methods Programs Biomed 219:106761. https://doi.org/10.1016/j.cmpb.2022.106761

    Article  PubMed  Google Scholar 

  36. Xu G, Liang Z, Tian T, Meng Q, Bertin KM, Mo F (2023) Development of a finite element full spine model with active muscles for quantitatively analyzing sarcopenia effects on lumbar load. Comput Methods Programs Biomed 240:107709. https://doi.org/10.1016/j.cmpb.2023.107709

    Article  PubMed  Google Scholar 

  37. Wiczenbach T, Pachocki L, Daszkiewicz K, Łuczkiewicz P, Witkowski W (2023) Development and validation of lumbar spine finite element model. PeerJ 11:e15805. https://doi.org/10.7717/peerj.15805

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scapinelli R, Stecco C, Pozzuoli A, Porzionato A, Macchi V, De Caro R (2006) The lumbar interspinous ligaments in humans: anatomical study and review of the literature. Cells Tissues Organs 183(1):1–11. https://doi.org/10.1159/000094901

    Article  PubMed  Google Scholar 

  39. Lawrence S, Llewellyn S, Hunt H, Cowin G, Sturgess DJ, Reutens D (2021) Anatomy of the lumbar interspinous ligament: findings relevant to epidural insertion using loss of resistance. Reg Anesth Pain Med 46(12):1085–1090. https://doi.org/10.1136/rapm-2021-103014

    Article  PubMed  Google Scholar 

  40. Anantha-Krishnan A, Myers CA, Fitzpatrick CK, Clary CW (2023) Instantaneous generation of subject-specific finite element models of the hip capsule. Bioengineering (Basel, Switzerland) 11(1):37. https://doi.org/10.3390/bioengineering11010037

    Article  PubMed  Google Scholar 

  41. Anantha Krishnan A, Myers CA, Scinto M, Marshall BN, Clary CW (2023) Specimen-specific finite element representations of implanted hip capsules. Comput Methods Biomech Biomed Eng 27(6):1–14. https://doi.org/10.1080/10255842.2023.2200878

    Article  Google Scholar 

  42. Park WM, Kim K, Kim YH (2013) Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med 43(9):1234–1240. https://doi.org/10.1016/j.compbiomed.2013.06.011

    Article  PubMed  Google Scholar 

  43. Little JP, de Visser H, Pearcy MJ, Adam CJ (2008) Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?–a modeling study. Comput Methods Biomech Biomed Eng 11(1):95–103. https://doi.org/10.1080/10255840701552143

    Article  Google Scholar 

  44. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26(24):E557–E561. https://doi.org/10.1097/00007632-200112150-00014

    Article  PubMed  Google Scholar 

  45. Goel VK, Mehta A, Jangra J, Faizan A, Kiapour A, Hoy RW et al (2007) Anatomic facet replacement system (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation. SAS J 1(1):46–54. https://doi.org/10.1016/sasj-2006-0010-rr

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS et al (2014) Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 47(8):1757–1766. https://doi.org/10.1016/j.jbiomech.2014.04.002

    Article  PubMed  Google Scholar 

  47. Östh J, Brolin K, Svensson MY, Linder A (2016) A female ligamentous cervical spine finite element model validated for physiological loads. J Biomech Eng 138(6):061005. https://doi.org/10.1115/1.4032966

    Article  PubMed  Google Scholar 

  48. Östh J, Mendoza-Vazquez M, Sato F, Svensson MY, Linder A, Brolin K (2017) A female head-neck model for rear impact simulations. J Biomech 51:49–56. https://doi.org/10.1016/j.jbiomech.2016.11.066

    Article  PubMed  Google Scholar 

  49. Davis ML, Koya B, Schap JM, Gayzik FS (2016) Development and full body validation of a 5th percentile female finite element model. Stapp Car Crash J 60:509–544. https://doi.org/10.4271/2016-22-0015

    Article  PubMed  Google Scholar 

  50. Schwartz D, Guleyupoglu B, Koya B, Stitzel JD, Gayzik FS (2015) Development of a computationally efficient full human body finite element model. Traffic Inj Prev 16(Suppl 1):S49-56. https://doi.org/10.1080/15389588.2015.1021418

    Article  PubMed  Google Scholar 

  51. Liang Z, Xu G, Liu T, Zhong Y, Mo F, Li Z (2023) Quantitatively biomechanical response analysis of posterior musculature reconstruction in cervical single-door laminoplasty. Comput Methods Programs Biomed 233:107479. https://doi.org/10.1016/j.cmpb.2023.107479

    Article  PubMed  Google Scholar 

  52. Zhang XY, Han Y (2023) Comparison of the biomechanical effects of lumbar disc degeneration on normal patients and osteoporotic patients: a finite element analysis. Med Eng Phys 112:103952. https://doi.org/10.1016/j.medengphy.2023.103952

    Article  PubMed  Google Scholar 

  53. Lin M, Paul R, Dhar UK, Doulgeris J, O’Connor TE, Tsai CT et al (2023) A review of finite element modeling for anterior cervical discectomy and fusion. Asian Spine J 17(5):949–963. https://doi.org/10.31616/asj.2022.0295

    Article  PubMed  PubMed Central  Google Scholar 

  54. Campana S, Charpail E, de Guise JA, Rillardon L, Skalli W, Mitton D (2011) Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI. J Mech Behav Biomed Mater 4(4):593–599. https://doi.org/10.1016/j.jmbbm.2011.01.007

    Article  PubMed  Google Scholar 

  55. Yan Y, Huang J, Li F, Hu L (2018) Investigation of the effect of neck muscle active force on whiplash injury of the cervical spine. Appl Bionics Biomech 2018:4542750. https://doi.org/10.1155/2018/4542750

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shen T-WD (2020) Investigation of whiplash associated disorders using finite element neck models with active musculature in frontal, rear and lateral impact. UWSpace

  57. Hewitt J, Guilak F, Glisson R, Vail TP (2001) Regional material properties of the human hip joint capsule ligaments. J Orthop Res Off Publ Orthop Res Soc 19(3):359–364. https://doi.org/10.1016/s0736-0266(00)00035-8

    Article  Google Scholar 

  58. Duquesne K, Pattyn C, Vanderstraeten B, Audenaert EA (2022) Handle with care: the anterior hip capsule plays a key role in daily hip performance. Orthop J Sports Med 10(3):23259671221078256. https://doi.org/10.1177/23259671221078254

    Article  PubMed  PubMed Central  Google Scholar 

  59. Watson PJ, Fagan MJ, Dobson CA (2015) Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis. Proc Inst Mech Eng Part H J Eng Med 229(1):9–19. https://doi.org/10.1177/0954411914564476

    Article  Google Scholar 

  60. John JD, Yoganandan N, Arun MWJ, Saravana KG (2018) Influence of morphological variations on cervical spine segmental responses from inertial loading. Traffic Inj Prev 19(sup1):S29-s36. https://doi.org/10.1080/15389588.2017.1403017

    Article  PubMed  Google Scholar 

  61. Phillips S, Mercer S, Bogduk N (2008) Anatomy and biomechanics of quadratus lumborum. Proc Inst Mech Eng Part H J Eng Med 222(2):151–159. https://doi.org/10.1243/09544119jeim266

    Article  Google Scholar 

  62. Östh J, Brolin K, Carlsson S, Wismans J, Davidsson J (2012) The occupant response to autonomous braking: a modeling approach that accounts for active musculature. Traffic Inj Prev 13(3):265–277. https://doi.org/10.1080/15389588.2011.649437

    Article  PubMed  Google Scholar 

  63. Wagnac E, Aubin C, Chaumoître K, Mac-Thiong JM, Ménard AL, Petit Y et al (2017) Substantial vertebral body osteophytes protect against severe vertebral fractures in compression. PLoS One 12(10):e0186779. https://doi.org/10.1371/journal.pone.0186779

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wagnac E, Arnoux PJ, Garo A, Aubin CE (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Compu 50(9):903–915. https://doi.org/10.1007/s11517-012-0908-6

    Article  Google Scholar 

  65. Cook DJ, Yeager MS, Cheng BC 2015 Range of motion of the intact lumbar segment: a multivariate study of 42 lumbar spines. Int J Spine Surg 9:5. 10.14444/2005

  66. Melnyk AD, Kingwell SP, Zhu Q, Chak JD, Cripton PA, Fisher CG et al (2013) An in vitro model of degenerative lumbar spondylolisthesis. Spine 38(14):E870–E877. https://doi.org/10.1097/BRS.0b013e3182945897

    Article  PubMed  Google Scholar 

  67. Liu R, He T, Wu X, Tan W, Yan Z, Deng Y (2024) Biomechanical response of decompression alone in lower grade lumbar degenerative spondylolisthesis–a finite element analysis. J Orthop Surg Res 19(1):209. https://doi.org/10.1186/s13018-024-04681-4

    Article  PubMed  PubMed Central  Google Scholar 

  68. Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 16(9):1459–1467. https://doi.org/10.1007/s00586-006-0294-6

    Article  Google Scholar 

  69. Curylo LJ, Edwards C, DeWald RW (2002) Radiographic markers in spondyloptosis: implications for spondylolisthesis progression. Spine 27(18):2021–2025. https://doi.org/10.1097/00007632-200209150-00010

    Article  PubMed  Google Scholar 

  70. Labelle H, Roussouly P, Berthonnaud E, Dimnet J, OʼBrien M (2005) The importance of spino-pelvic balance in L5–s1 developmental spondylolisthesis: a review of pertinent radiologic measurements. Spine 30(6 Suppl):S27–S34. https://doi.org/10.1097/01.brs.0000155560.92580.90

    Article  PubMed  Google Scholar 

  71. Inoue N, Espinoza Orías AA (2011) Biomechanics of intervertebral disk degeneration. Orthop Clin North Am 42(4):487–99, vii. https://doi.org/10.1016/j.ocl.2011.07.001

  72. Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, OʼBrien M, Chopin D et al (2004) Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine 29(18):2049–54. https://doi.org/10.1097/01.brs.0000138279.53439.cc

    Article  PubMed  Google Scholar 

  73. Lv X, Liu Y, Zhou S, Wang Q, Gu H, Fu X et al (2016) Correlations between the feature of sagittal spinopelvic alignment and facet joint degeneration: a retrospective study. BMC Musculoskelet Disord 17(1):341. https://doi.org/10.1186/s12891-016-1193-6

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li W, Wang S, Xia Q, Passias P, Kozanek M, Wood K et al (2011) Lumbar facet joint motion in patients with degenerative disc disease at affected and adjacent levels: an in vivo biomechanical study. Spine 36(10):E629–E637. https://doi.org/10.1097/BRS.0b013e3181faaef7

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang A, Wang T, Zang L, Yuan S, Fan N, Du P et al (2022) Quantitative radiological characteristics of the facet joints in patients with lumbar foraminal stenosis. J Pain Res 15:2363–2371. https://doi.org/10.2147/jpr.S374720

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kalichman L, Hunter DJ (2008) Diagnosis and conservative management of degenerative lumbar spondylolisthesis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 17(3):327–335. https://doi.org/10.1007/s00586-007-0543-3

    Article  Google Scholar 

  77. Freeman MD, Woodham MA, Woodham AW (2010) The role of the lumbar multifidus in chronic low back pain: a review. PM R J Inj Funct Rehab 2(2):142–6; quiz 1 p following 67. https://doi.org/10.1016/j.pmrj.2009.11.006

  78. Sajko S, Stuber K (2009) Psoas major: a case report and review of its anatomy, biomechanics, and clinical implications. J Can Chiropr Assoc 53(4):311–318

    PubMed  PubMed Central  Google Scholar 

  79. Kim WD, Shin D (2023) Effects of pelvic-tilt imbalance on disability, muscle performance, and range of motion in office workers with non-specific low-back pain. Healthcare (Basel, Switzerland) 11(6):893. https://doi.org/10.3390/healthcare11060893

    Article  PubMed  Google Scholar 

  80. Adouni M, Alkhatib F, Hajji R, Faisal TR (2024) Effects of overweight and obesity on lower limb walking characteristics from joint kinematics to muscle activations. Gait Posture 113:337–344. https://doi.org/10.1016/j.gaitpost.2024.06.024

    Article  PubMed  Google Scholar 

  81. Adouni M, Aydelik H, Faisal TR, Hajji R (2024) The effect of body weight on the knee joint biomechanics based on subject-specific finite element-musculoskeletal approach. Sci Rep 14(1):13777. https://doi.org/10.1038/s41598-024-63745-x

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garay RS, Solitro GF, Lam KC, Morris RP, Albarghouthi A, Lindsey RW et al (2022) Characterization of regional variation of bone mineral density in the geriatric human cervical spine by quantitative computed tomography. PLoS One 17(7):e0271187. https://doi.org/10.1371/journal.pone.0271187

    Article  PubMed  PubMed Central  Google Scholar 

  83. Al-Barghouthi A, Lee S, Solitro GF, Latta L, Travascio F (2020) Relationships among bone morphological parameters and mechanical properties of cadaveric human vertebral cancellous bone. JBMR Plus 4(5):e10351. https://doi.org/10.1002/jbm4.10351

    Article  PubMed  PubMed Central  Google Scholar 

  84. Volz M, Elmasry S, Jackson AR, Travascio F (2021) Computational modeling intervertebral disc pathophysiology: a review. Front Physiol 12:750668. https://doi.org/10.3389/fphys.2021.750668

    Article  PubMed  Google Scholar 

  85. Nikkhoo M, Lu ML, Chen WC, Fu CJ, Niu CC, Lin YH et al (2021) Biomechanical investigation between rigid and semirigid posterolateral fixation during daily activities: geometrically parametric poroelastic finite element analyses. Front Bioeng Biotechnol 9:646079. https://doi.org/10.3389/fbioe.2021.646079

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sun Z, Sun Y, Mi C (2024) Comprehensive modeling of annulus fibrosus: from biphasic refined characterization to damage accumulation under viscous loading. Acta Biomater 174:228–244. https://doi.org/10.1016/j.actbio.2023.12.007

    Article  PubMed  Google Scholar 

  87. Castro APG, Alves JL (2021) Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc. Comput Methods Biomech Biomed Engin 24(5):538–550. https://doi.org/10.1080/10255842.2020.1839059

    Article  PubMed  Google Scholar 

  88. Barthelemy VM, van Rijsbergen MM, Wilson W, Huyghe JM, van Rietbergen B, Ito K (2016) A computational spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc. J Mech Behav Biomed Mater 54:194–204. https://doi.org/10.1016/j.jmbbm.2015.09.028

    Article  PubMed  Google Scholar 

  89. Amirouche F, Solitro GF, Siemionow K, Drucker D, Upadhyay A, Patel P (2015) Role of posterior elements in the disc bulging of a degenerated cervical spine. Int J Spine Surg 9:13. https://doi.org/10.14444/2013

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kundu J, Pati F, Shim JH, Cho DW (2014) 10 - Rapid prototyping technology for bone regeneration. In: Narayan R (ed) Rapid prototyping of biomaterials. Woodhead Publishing, pp 254–284

    Chapter  Google Scholar 

  91. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333. https://doi.org/10.1146/annurev.bioeng.3.1.307

    Article  PubMed  Google Scholar 

  92. Singh D, Cronin DS (2017) An investigation of dimensional scaling using cervical spine motion segment finite element models. Int J Num Methods Biomed Eng 33(11):e2872. https://doi.org/10.1002/cnm.2872

    Article  Google Scholar 

  93. Panzer MB, Fice JB, Cronin DS (2011) Cervical spine response in frontal crash. Med Eng Phys 33(9):1147–1159. https://doi.org/10.1016/j.medengphy.2011.05.004

    Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by the Shenzhen Science and Technology Program (Grant No. JCYJ20210324111212035), Sanming Project of Medicine in Shenzhen (Grant No. SZZYSM202311006), Natural Science Foundation of Hunan Province (Grant No. 2022JJ40696), Natural Science Foundation of Changsha City (Grant No. kq2202390), and Scientific Research Project of Traditional Chinese Medicine Bureau of Hunan Province (Grant No. B2023011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ziyang Liang, Xiaowei Dai, and Weisen Li are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Dai, X., Li, W. et al. Development of a spinopelvic complex finite element model for quantitative analysis of the biomechanical response of patients with degenerative spondylolisthesis. Med Biol Eng Comput 63, 575–594 (2025). https://doi.org/10.1007/s11517-024-03218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03218-5

Keywords