Abstract
Research on degenerative spondylolisthesis (DS) has focused primarily on the biomechanical responses of pathological segments, with few studies involving muscle modelling in simulated analysis, leading to an emphasis on the back muscles in physical therapy, neglecting the ventral muscles. The purpose of this study was to quantitatively analyse the biomechanical response of the spinopelvic complex and surrounding muscle groups in DS patients using integrative modelling. The findings may aid in the development of more comprehensive rehabilitation strategies for DS patients. Two new finite element spinopelvic complex models with detailed muscles for normal spine and DS spine (L4 forwards slippage) modelling were established and validated at multiple levels. Then, the spinopelvic position parameters including peak stress of the lumbar isthmic-cortical bone, intervertebral discs, and facet joints; peak strain of the ligaments; peak force of the muscles; and percentage difference in the range of motion were analysed and compared under flexion–extension (F-E), lateral bending (LB), and axial rotation (AR) loading conditions between the two models. Compared with the normal spine model, the DS spine model exhibited greater stress and strain in adjacent biological tissues. Stress at the L4/5 disc and facet joints under AR and LB conditions was approximately 6.6 times greater in the DS spine model than in the normal model, the posterior longitudinal ligament peak strain in the normal model was 1/10 of that in the DS model, and more high-stress areas were found in the DS model, with stress notably transferring forwards. Additionally, compared with the normal spine model, the DS model exhibited greater muscle tensile forces in the lumbosacral muscle groups during F-E and LB motions. The psoas muscle in the DS model was subjected to 23.2% greater tensile force than that in the normal model. These findings indicated that L4 anterior slippage and changes in lumbosacral-pelvic alignment affect the biomechanical response of muscles. In summary, the present work demonstrated a certain level of accuracy and validity of our models as well as the differences between the models. Alterations in spondylolisthesis and the accompanying overall imbalance in the spinopelvic complex result in increased loading response levels of the functional spinal units in DS patients, creating a vicious cycle that exacerbates the imbalance in the lumbosacral region. Therefore, clinicians are encouraged to propose specific exercises for the ventral muscles, such as the psoas group, to address spinopelvic imbalance and halt the progression of DS.
Graphical Abstract

















Similar content being viewed by others
References
Harrop JS, Hilibrand A, Mihalovich KE, Dettori JR, Chapman J (2014) Cost-effectiveness of surgical treatment for degenerative spondylolisthesis and spinal stenosis. Spine 39(22 Suppl 1):S75-85. https://doi.org/10.1097/brs.0000000000000545
Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W et al (2008) Expenditures and health status among adults with back and neck problems. JAMA 299(6):656–664. https://doi.org/10.1001/jama.299.6.656
Dagenais S, Caro J, Haldeman S (2008) A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J Off J North Am Spine Soc 8(1):8–20. https://doi.org/10.1016/j.spinee.2007.10.005
Jones KE, Polly DW Jr (2019) Cost-effectiveness for surgical treatment of degenerative spondylolisthesis. Neurosurg Clin N Am 30(3):365–372. https://doi.org/10.1016/j.nec.2019.02.010
Koreckij TD, Fischgrund JS (2015) Degenerative spondylolisthesis. 28(7):236-41. https://doi.org/10.1097/bsd.0000000000000298
Derman PB, Albert TJ (2017) Interbody fusion techniques in the surgical management of degenerative lumbar spondylolisthesis. Curr Rev Musculoskelet Med 10(4):530–538. https://doi.org/10.1007/s12178-017-9443-2
Liu Z, Qin X, Sun K, Yin H, Chen X, Yang B et al (2022) Manipulation for degenerative lumbar spondylolisthesis: a systematic review of randomized controlled trials. J Tradit Chin Med Sci 9(2):121–127. https://doi.org/10.1016/j.jtcms.2022.02.001
Aoki Y, Takahashi H, Nakajima A, Kubota G, Watanabe A, Nakajima T et al (2020) Prevalence of lumbar spondylolysis and spondylolisthesis in patients with degenerative spinal disease. Sci Rep 10(1):6739. https://doi.org/10.1038/s41598-020-63784-0
Akkawi I, Zmerly H (2022) Degenerative spondylolisthesis: a narrative review. Acta bio-medica Atenei Parmensis 92(6):e2021313. https://doi.org/10.23750/abm.v92i6.10526
Koslosky E, Gendelberg D (2020) Classification in brief: the Meyerding classification system of spondylolisthesis. Clin Orthop Relat Res 478(5):1125–1130. https://doi.org/10.1097/corr.0000000000001153
Ramakrishna VAS, Chamoli U, Viglione LL, Tsafnat N, Diwan AD (2018) Mild (not severe) disc degeneration is implicated in the progression of bilateral L5 spondylolysis to spondylolisthesis. BMC Musculoskelet Disord 19(1):98. https://doi.org/10.1186/s12891-018-2011-0
Yaroub S, Hamandi SJ, Mohson K (2022) Kinematic analysis of L4–L5 spinal segment with spondylolysis and different types of grade 1 spondylolisthesis: a nonlinear finite element study. Acta Bioeng Biomech 24(2):177–186
Bashkuev M, Reitmaier S, Schmidt H (2020) Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J Biomech 102:109518. https://doi.org/10.1016/j.jbiomech.2019.109518
Ding H, Liao L, Yan P, Zhao X, Li M (2021) Three-dimensional finite element analysis of l4–5 degenerative lumbar disc traction under different pushing heights. J Healthc Eng 2021:1322397. https://doi.org/10.1155/2021/1322397
Oh SK, Chung SS, Lee CS (2009) Correlation of pelvic parameters with isthmic spondylolisthesis. Asian Spine J 3(1):21–26. https://doi.org/10.4184/asj.2009.3.1.21
Gadkari A, Ghodke A, Jha A (2022) Correlation of pelvic incidence and pelvic parameters in lumbar spondylolisthesis. Surg Neurol Int 13:405. https://doi.org/10.25259/sni_545_2022
Zhu R, Niu WX, Wang ZP, Pei XL, He B, Zeng ZL et al (2018) The effect of muscle direction on the predictions of finite element model of human lumbar spine. Biomed Res Int 2018:4517471. https://doi.org/10.1155/2018/4517471
Zhu R, Niu WX, Zeng ZL, Tong JH, Zhen ZW, Zhou S et al (2017) The effects of muscle weakness on degenerative spondylolisthesis: a finite element study. Clin Biomech (Bristol Avon) 41:34–38. https://doi.org/10.1016/j.clinbiomech.2016.11.007
Vanti C, Ferrari S, Guccione AA, Pillastrini P (2021) Lumbar spondylolisthesis: state of the art on assessment and conservative treatment. Arch Physiother 11(1):19. https://doi.org/10.1186/s40945-021-00113-2
Sawa AGU, Lehrman JN, Crawford NR, Kelly BP (2020) Variations among human lumbar spine segments and their relationships to in vitro biomechanics: a retrospective analysis of 281 motion segments from 85 cadaveric spines. Int J Spine Surg 14(2):140–50. https://doi.org/10.14444/7021
Bruno AG, Broe KE, Zhang X, Samelson EJ, Meng CA, Manoharan R et al (2014) Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J Bone Mineral Res Off J Am Soc Bone Mineral Res 29(3):562–569. https://doi.org/10.1002/jbmr.2067
Miller CA, Hwang SJ, Cotter MM, Vorperian HK (2021) Developmental morphology of the cervical vertebrae and the emergence of sexual dimorphism in size and shape: a computed tomography study. Anat Rec (Hoboken, NJ : 2007) 304(8):1692–708. https://doi.org/10.1002/ar.24559
Zhu Z, Xu L, Zhu F, Jiang L, Wang Z, Liu Z et al (2014) Sagittal alignment of spine and pelvis in asymptomatic adults: norms in Chinese populations. Spine 39(1):E1-6. https://doi.org/10.1097/brs.0000000000000022
Zhou S, Sun Z, Li W, Zou D, Li W (2022) The pelvic incidence stratified sagittal spinopelvic alignment in asymptomatic Chinese population with different age groups. Glob Spine J 12(8):1821–1826. https://doi.org/10.1177/2192568221989647
Lin RM, Jou IM, Yu CY (1992) Lumbar lordosis: normal adults. J Formos Med Assoc = Taiwan yi zhi 91(3):329–33
Vleeming A, Schuenke MD, Masi AT, Carreiro JE, Danneels L, Willard FH (2012) The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. J Anat 221(6):537–567. https://doi.org/10.1111/j.1469-7580.2012.01564.x
Woon JT, Stringer MD (2012) Clinical anatomy of the coccyx: a systematic review. Clinical anatomy (New York, NY) 25(2):158–167. https://doi.org/10.1002/ca.21216
Mengoni M (2021) Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomech Model Mechanobiol 20(2):389–401. https://doi.org/10.1007/s10237-020-01403-7
Yao J, Dong B, Sun J, Liu JT, Liu F, Li XW et al (2020) Accuracy and reliability of computer-aided anatomical measurements for vertebral body and disc based on computed tomography scans. Orthop Surg 12(4):1182–1189. https://doi.org/10.1111/os.12729
Palepu V, Rayaprolu SD, Nagaraja S (2019) Differences in trabecular bone, cortical shell, and endplate microstructure across the lumbar spine. Int J Spine Surg 13(4):361–70. https://doi.org/10.14444/6049
Wang Y, Battié MC, Videman T (2012) A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 21(11):2316–2323. https://doi.org/10.1007/s00586-012-2415-8
Inoue N, Orías AAE, Segami K (2020) Biomechanics of the lumbar facet joint. Spine Surg Relat Res 4(1):1–7. https://doi.org/10.22603/ssrr.2019-0017
Cappetti N, Naddeo A, Naddeo F, Solitro GF (2010) Influence of the disk geometry on different FEM models of the spine. 9th international symposium on Computer Methods in Biomechanics and Biomedical Engineering, Valencia (SPAIN). 24–7
Panzer MB, Cronin DS (2009) C4–C5 segment finite element model development, validation, and load-sharing investigation. J Biomech 42(4):480–490. https://doi.org/10.1016/j.jbiomech.2008.11.036
Liang Z, Mo F, Zheng Z, Li Y, Tian Y, Jiang X et al (2022) Quantitative cervical spine injury responses in whiplash loading with a numerical method of natural neural reflex consideration. Comput Methods Programs Biomed 219:106761. https://doi.org/10.1016/j.cmpb.2022.106761
Xu G, Liang Z, Tian T, Meng Q, Bertin KM, Mo F (2023) Development of a finite element full spine model with active muscles for quantitatively analyzing sarcopenia effects on lumbar load. Comput Methods Programs Biomed 240:107709. https://doi.org/10.1016/j.cmpb.2023.107709
Wiczenbach T, Pachocki L, Daszkiewicz K, Łuczkiewicz P, Witkowski W (2023) Development and validation of lumbar spine finite element model. PeerJ 11:e15805. https://doi.org/10.7717/peerj.15805
Scapinelli R, Stecco C, Pozzuoli A, Porzionato A, Macchi V, De Caro R (2006) The lumbar interspinous ligaments in humans: anatomical study and review of the literature. Cells Tissues Organs 183(1):1–11. https://doi.org/10.1159/000094901
Lawrence S, Llewellyn S, Hunt H, Cowin G, Sturgess DJ, Reutens D (2021) Anatomy of the lumbar interspinous ligament: findings relevant to epidural insertion using loss of resistance. Reg Anesth Pain Med 46(12):1085–1090. https://doi.org/10.1136/rapm-2021-103014
Anantha-Krishnan A, Myers CA, Fitzpatrick CK, Clary CW (2023) Instantaneous generation of subject-specific finite element models of the hip capsule. Bioengineering (Basel, Switzerland) 11(1):37. https://doi.org/10.3390/bioengineering11010037
Anantha Krishnan A, Myers CA, Scinto M, Marshall BN, Clary CW (2023) Specimen-specific finite element representations of implanted hip capsules. Comput Methods Biomech Biomed Eng 27(6):1–14. https://doi.org/10.1080/10255842.2023.2200878
Park WM, Kim K, Kim YH (2013) Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med 43(9):1234–1240. https://doi.org/10.1016/j.compbiomed.2013.06.011
Little JP, de Visser H, Pearcy MJ, Adam CJ (2008) Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?–a modeling study. Comput Methods Biomech Biomed Eng 11(1):95–103. https://doi.org/10.1080/10255840701552143
Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26(24):E557–E561. https://doi.org/10.1097/00007632-200112150-00014
Goel VK, Mehta A, Jangra J, Faizan A, Kiapour A, Hoy RW et al (2007) Anatomic facet replacement system (AFRS) restoration of lumbar segment mechanics to intact: a finite element study and in vitro cadaver investigation. SAS J 1(1):46–54. https://doi.org/10.1016/sasj-2006-0010-rr
Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS et al (2014) Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 47(8):1757–1766. https://doi.org/10.1016/j.jbiomech.2014.04.002
Östh J, Brolin K, Svensson MY, Linder A (2016) A female ligamentous cervical spine finite element model validated for physiological loads. J Biomech Eng 138(6):061005. https://doi.org/10.1115/1.4032966
Östh J, Mendoza-Vazquez M, Sato F, Svensson MY, Linder A, Brolin K (2017) A female head-neck model for rear impact simulations. J Biomech 51:49–56. https://doi.org/10.1016/j.jbiomech.2016.11.066
Davis ML, Koya B, Schap JM, Gayzik FS (2016) Development and full body validation of a 5th percentile female finite element model. Stapp Car Crash J 60:509–544. https://doi.org/10.4271/2016-22-0015
Schwartz D, Guleyupoglu B, Koya B, Stitzel JD, Gayzik FS (2015) Development of a computationally efficient full human body finite element model. Traffic Inj Prev 16(Suppl 1):S49-56. https://doi.org/10.1080/15389588.2015.1021418
Liang Z, Xu G, Liu T, Zhong Y, Mo F, Li Z (2023) Quantitatively biomechanical response analysis of posterior musculature reconstruction in cervical single-door laminoplasty. Comput Methods Programs Biomed 233:107479. https://doi.org/10.1016/j.cmpb.2023.107479
Zhang XY, Han Y (2023) Comparison of the biomechanical effects of lumbar disc degeneration on normal patients and osteoporotic patients: a finite element analysis. Med Eng Phys 112:103952. https://doi.org/10.1016/j.medengphy.2023.103952
Lin M, Paul R, Dhar UK, Doulgeris J, O’Connor TE, Tsai CT et al (2023) A review of finite element modeling for anterior cervical discectomy and fusion. Asian Spine J 17(5):949–963. https://doi.org/10.31616/asj.2022.0295
Campana S, Charpail E, de Guise JA, Rillardon L, Skalli W, Mitton D (2011) Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI. J Mech Behav Biomed Mater 4(4):593–599. https://doi.org/10.1016/j.jmbbm.2011.01.007
Yan Y, Huang J, Li F, Hu L (2018) Investigation of the effect of neck muscle active force on whiplash injury of the cervical spine. Appl Bionics Biomech 2018:4542750. https://doi.org/10.1155/2018/4542750
Shen T-WD (2020) Investigation of whiplash associated disorders using finite element neck models with active musculature in frontal, rear and lateral impact. UWSpace
Hewitt J, Guilak F, Glisson R, Vail TP (2001) Regional material properties of the human hip joint capsule ligaments. J Orthop Res Off Publ Orthop Res Soc 19(3):359–364. https://doi.org/10.1016/s0736-0266(00)00035-8
Duquesne K, Pattyn C, Vanderstraeten B, Audenaert EA (2022) Handle with care: the anterior hip capsule plays a key role in daily hip performance. Orthop J Sports Med 10(3):23259671221078256. https://doi.org/10.1177/23259671221078254
Watson PJ, Fagan MJ, Dobson CA (2015) Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis. Proc Inst Mech Eng Part H J Eng Med 229(1):9–19. https://doi.org/10.1177/0954411914564476
John JD, Yoganandan N, Arun MWJ, Saravana KG (2018) Influence of morphological variations on cervical spine segmental responses from inertial loading. Traffic Inj Prev 19(sup1):S29-s36. https://doi.org/10.1080/15389588.2017.1403017
Phillips S, Mercer S, Bogduk N (2008) Anatomy and biomechanics of quadratus lumborum. Proc Inst Mech Eng Part H J Eng Med 222(2):151–159. https://doi.org/10.1243/09544119jeim266
Östh J, Brolin K, Carlsson S, Wismans J, Davidsson J (2012) The occupant response to autonomous braking: a modeling approach that accounts for active musculature. Traffic Inj Prev 13(3):265–277. https://doi.org/10.1080/15389588.2011.649437
Wagnac E, Aubin C, Chaumoître K, Mac-Thiong JM, Ménard AL, Petit Y et al (2017) Substantial vertebral body osteophytes protect against severe vertebral fractures in compression. PLoS One 12(10):e0186779. https://doi.org/10.1371/journal.pone.0186779
Wagnac E, Arnoux PJ, Garo A, Aubin CE (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Compu 50(9):903–915. https://doi.org/10.1007/s11517-012-0908-6
Cook DJ, Yeager MS, Cheng BC 2015 Range of motion of the intact lumbar segment: a multivariate study of 42 lumbar spines. Int J Spine Surg 9:5. 10.14444/2005
Melnyk AD, Kingwell SP, Zhu Q, Chak JD, Cripton PA, Fisher CG et al (2013) An in vitro model of degenerative lumbar spondylolisthesis. Spine 38(14):E870–E877. https://doi.org/10.1097/BRS.0b013e3182945897
Liu R, He T, Wu X, Tan W, Yan Z, Deng Y (2024) Biomechanical response of decompression alone in lower grade lumbar degenerative spondylolisthesis–a finite element analysis. J Orthop Surg Res 19(1):209. https://doi.org/10.1186/s13018-024-04681-4
Barrey C, Jund J, Noseda O, Roussouly P (2007) Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 16(9):1459–1467. https://doi.org/10.1007/s00586-006-0294-6
Curylo LJ, Edwards C, DeWald RW (2002) Radiographic markers in spondyloptosis: implications for spondylolisthesis progression. Spine 27(18):2021–2025. https://doi.org/10.1097/00007632-200209150-00010
Labelle H, Roussouly P, Berthonnaud E, Dimnet J, OʼBrien M (2005) The importance of spino-pelvic balance in L5–s1 developmental spondylolisthesis: a review of pertinent radiologic measurements. Spine 30(6 Suppl):S27–S34. https://doi.org/10.1097/01.brs.0000155560.92580.90
Inoue N, Espinoza Orías AA (2011) Biomechanics of intervertebral disk degeneration. Orthop Clin North Am 42(4):487–99, vii. https://doi.org/10.1016/j.ocl.2011.07.001
Labelle H, Roussouly P, Berthonnaud E, Transfeldt E, OʼBrien M, Chopin D et al (2004) Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine 29(18):2049–54. https://doi.org/10.1097/01.brs.0000138279.53439.cc
Lv X, Liu Y, Zhou S, Wang Q, Gu H, Fu X et al (2016) Correlations between the feature of sagittal spinopelvic alignment and facet joint degeneration: a retrospective study. BMC Musculoskelet Disord 17(1):341. https://doi.org/10.1186/s12891-016-1193-6
Li W, Wang S, Xia Q, Passias P, Kozanek M, Wood K et al (2011) Lumbar facet joint motion in patients with degenerative disc disease at affected and adjacent levels: an in vivo biomechanical study. Spine 36(10):E629–E637. https://doi.org/10.1097/BRS.0b013e3181faaef7
Wang A, Wang T, Zang L, Yuan S, Fan N, Du P et al (2022) Quantitative radiological characteristics of the facet joints in patients with lumbar foraminal stenosis. J Pain Res 15:2363–2371. https://doi.org/10.2147/jpr.S374720
Kalichman L, Hunter DJ (2008) Diagnosis and conservative management of degenerative lumbar spondylolisthesis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 17(3):327–335. https://doi.org/10.1007/s00586-007-0543-3
Freeman MD, Woodham MA, Woodham AW (2010) The role of the lumbar multifidus in chronic low back pain: a review. PM R J Inj Funct Rehab 2(2):142–6; quiz 1 p following 67. https://doi.org/10.1016/j.pmrj.2009.11.006
Sajko S, Stuber K (2009) Psoas major: a case report and review of its anatomy, biomechanics, and clinical implications. J Can Chiropr Assoc 53(4):311–318
Kim WD, Shin D (2023) Effects of pelvic-tilt imbalance on disability, muscle performance, and range of motion in office workers with non-specific low-back pain. Healthcare (Basel, Switzerland) 11(6):893. https://doi.org/10.3390/healthcare11060893
Adouni M, Alkhatib F, Hajji R, Faisal TR (2024) Effects of overweight and obesity on lower limb walking characteristics from joint kinematics to muscle activations. Gait Posture 113:337–344. https://doi.org/10.1016/j.gaitpost.2024.06.024
Adouni M, Aydelik H, Faisal TR, Hajji R (2024) The effect of body weight on the knee joint biomechanics based on subject-specific finite element-musculoskeletal approach. Sci Rep 14(1):13777. https://doi.org/10.1038/s41598-024-63745-x
Garay RS, Solitro GF, Lam KC, Morris RP, Albarghouthi A, Lindsey RW et al (2022) Characterization of regional variation of bone mineral density in the geriatric human cervical spine by quantitative computed tomography. PLoS One 17(7):e0271187. https://doi.org/10.1371/journal.pone.0271187
Al-Barghouthi A, Lee S, Solitro GF, Latta L, Travascio F (2020) Relationships among bone morphological parameters and mechanical properties of cadaveric human vertebral cancellous bone. JBMR Plus 4(5):e10351. https://doi.org/10.1002/jbm4.10351
Volz M, Elmasry S, Jackson AR, Travascio F (2021) Computational modeling intervertebral disc pathophysiology: a review. Front Physiol 12:750668. https://doi.org/10.3389/fphys.2021.750668
Nikkhoo M, Lu ML, Chen WC, Fu CJ, Niu CC, Lin YH et al (2021) Biomechanical investigation between rigid and semirigid posterolateral fixation during daily activities: geometrically parametric poroelastic finite element analyses. Front Bioeng Biotechnol 9:646079. https://doi.org/10.3389/fbioe.2021.646079
Sun Z, Sun Y, Mi C (2024) Comprehensive modeling of annulus fibrosus: from biphasic refined characterization to damage accumulation under viscous loading. Acta Biomater 174:228–244. https://doi.org/10.1016/j.actbio.2023.12.007
Castro APG, Alves JL (2021) Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc. Comput Methods Biomech Biomed Engin 24(5):538–550. https://doi.org/10.1080/10255842.2020.1839059
Barthelemy VM, van Rijsbergen MM, Wilson W, Huyghe JM, van Rietbergen B, Ito K (2016) A computational spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc. J Mech Behav Biomed Mater 54:194–204. https://doi.org/10.1016/j.jmbbm.2015.09.028
Amirouche F, Solitro GF, Siemionow K, Drucker D, Upadhyay A, Patel P (2015) Role of posterior elements in the disc bulging of a degenerated cervical spine. Int J Spine Surg 9:13. https://doi.org/10.14444/2013
Kundu J, Pati F, Shim JH, Cho DW (2014) 10 - Rapid prototyping technology for bone regeneration. In: Narayan R (ed) Rapid prototyping of biomaterials. Woodhead Publishing, pp 254–284
Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333. https://doi.org/10.1146/annurev.bioeng.3.1.307
Singh D, Cronin DS (2017) An investigation of dimensional scaling using cervical spine motion segment finite element models. Int J Num Methods Biomed Eng 33(11):e2872. https://doi.org/10.1002/cnm.2872
Panzer MB, Fice JB, Cronin DS (2011) Cervical spine response in frontal crash. Med Eng Phys 33(9):1147–1159. https://doi.org/10.1016/j.medengphy.2011.05.004
Funding
This work is supported by the Shenzhen Science and Technology Program (Grant No. JCYJ20210324111212035), Sanming Project of Medicine in Shenzhen (Grant No. SZZYSM202311006), Natural Science Foundation of Hunan Province (Grant No. 2022JJ40696), Natural Science Foundation of Changsha City (Grant No. kq2202390), and Scientific Research Project of Traditional Chinese Medicine Bureau of Hunan Province (Grant No. B2023011).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Ziyang Liang, Xiaowei Dai, and Weisen Li are co-first authors.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liang, Z., Dai, X., Li, W. et al. Development of a spinopelvic complex finite element model for quantitative analysis of the biomechanical response of patients with degenerative spondylolisthesis. Med Biol Eng Comput 63, 575–594 (2025). https://doi.org/10.1007/s11517-024-03218-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-024-03218-5