Skip to main content
Log in

Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage.

Methods

Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example.

Results

Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm.

Conclusion

Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasche V, Movassaghi B, Grass M, Schäfer D, Kühl HP, Günther RW and Bücker A (2006). Three-dimensional X-ray coronary angiography in the porcine model: a feasibility study. Acad Radiol 13: 644–651

    Article  PubMed  Google Scholar 

  2. Mansour MC, Reddy VY, Singh JP, Mela T, Rasche V and Ruskin J (2005). Three-dimensional reconstruction of the coronary sinus using rotational angiography. J Cardiovasc Electrophysiol 16: 675–676

    Article  PubMed  Google Scholar 

  3. Sra J, Krum D, Malloy A, Vass M, Belanger B, Soubelet E, Vaillant R and Akhtar M (2005). Registration of three-dimensional left atrial computer tomographic images with projections obtained using fluoroscopy. Circulation 112: 3763–3768

    Article  PubMed  Google Scholar 

  4. Sra J, Narayan G, Krum D, Malloy A, Cooley R, Bhatia A, Dhala A, Blanck Z, Nagia V and Akhtar M (2007). Computed tomography-fluoroscopy image integration-guided catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol 18: 409–414

    Article  PubMed  Google Scholar 

  5. Ector J, De Buck S, Adams J, Dymarkowski S, Bogaert J and Heidbuchel H (2005). Cardiac three-dimensional magnetic resonance imaging and fluoroscopy merging: a new approach for electroanatomic mapping to assist catheter ablation. Circulation 112: 3677–3679

    Article  Google Scholar 

  6. Rhode KW, Hill DLG, Edwards PJ, Hipwell J, Rueckert D, Sanchez-Ortiz G, Hegde S, Rahunathan V and Razavi R (2003). Registration and Tracking to Integrate X-Ray and MR Images in an XMR Facility. IEEE Trans Med Imag 22: 1369–1378

    Article  Google Scholar 

  7. Gutierrez LF, Shechter G, Lederman RJ, McVeigh ER, Ozturk C (2004) Fiducial based registration of MR and X-ray images for MRI-guided catheter interventions. In: Proceedings of the fifth interventional MRI symposium, Cambridge, MA

  8. De Silva R, Gutierrez LF, Raval AN, McVeigh ER, Ozturk C and Lederman J (2006). X-ray fused with magnetic resonance imaging (XFM) to target endomyocardial injections: validation in a swine model of myocardial infarction. Circulation 114: 2342–2350

    Article  PubMed  Google Scholar 

  9. Mikaelian BJ, Malchano ZJ, Neuzil P, Weichert J, Doshi SK, Ruskin JN and Reddy VY (2005). Images in cardiovascular medicine. Integration of 3-dimensional cardiac computed tomography images with real-time electroanatomic mapping to guide catheter ablation of atrial fibrillation. Circulation 112: e35–e36

    Article  PubMed  Google Scholar 

  10. Earley MJ, Showkathali R, Alzetani M, Kistler PM, Gupta D, Abrams DJ, Horrocks JA, Harris SJ, Sporton SC and Schilling RC (2006). Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: a prospective randomized trial. Eur Heart J 27: 1223–1229

    Article  PubMed  Google Scholar 

  11. Tops LF, Bax JJ, Zeppenfeld K, Jongbloed MR, Lamb HJ, van der Wall EE and Schalij MJ (2005). Fusion of multislice computed tomography imaging with three-dimensional electroanatomic mapping to guide radiofrequency catheter ablation procedures. Heart Rhythm 10: 1076–1081

    Article  Google Scholar 

  12. Lang R and Sugeng L (2002). A fantastic journey: 3D cardiac ultrasound goes live. Radiol Manage 24: 18–22

    PubMed  Google Scholar 

  13. Mäkelä T, Clarysse P, Sipilä O, Pauna N, Pham QC, Katila T and Magnin IE (2002). A review of Cardiac image registration methods. IEEE Trans Med Imag 21: 1011–1021

    Article  Google Scholar 

  14. Kapetanakis S, Kearney MT, Siva A, Gall N, Cooklin M and Monaghan MJ (2005). Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 112: 992–1000

    Article  PubMed  CAS  Google Scholar 

  15. Corsi C, Lang RM, Veronessi F, Weinert L, Cainai EG, MacEneaney P, Lamberti C and Mor-Avi V (2005). Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112: 1161–1170

    Article  PubMed  Google Scholar 

  16. Grass M, Koppe R, Klotz E, Proksa R, Kuhn MH, Aerts H, Op de Beek J and Kemkers R (1999). Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comp Med Imag Grap 23: 311–321

    Article  CAS  Google Scholar 

  17. Movassaghi B, Rasche V, Grass M, Viergever M and Niessen W (2004). A quantitative analysis of 3D coronary modeling from two or more projection images. IEEE Trans Med Imag 12: 1517–1531

    Article  Google Scholar 

  18. Chen SYJ and Carroll JD (2000). 3-D Reconstruction of Coronary Arterial Tree to optimize angiographic visualization. IEEE Trans Med Imag 19: 318–336

    Article  CAS  Google Scholar 

  19. Koppe R, Klotz E, Op de Beek J, Aerts H (1995) 3D vessel reconstruction based on rotational angiography. In: Proc computer assisted radiology (CAR’95), Lemke HU (ed) Berlin, Germany. Springer, Heidelberg

  20. Rasche V, Schreiber B, Graeff C, Istel T, Schomberg H, Grass M, Koppe R, Klotz E, Rose G (2003) Performance of image intensifier equipped X-ray systems for three-dimensional imaging. In: Lemke HU, Inamura K, Vannier MW, Farman AG, Doi K, Reiber JHC (eds) Proc computer assisted radiology and surgery, vol 25, pp 187–192

  21. Lorenz C, et al (1997) Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2-D and 3d medical images. In: Troccaz J, Grimson E, Moesges R (eds) Proc CVRMed-MRCAS’97, pp 233–242

  22. Wellnhofer E, Goubergrits L, Kertzscher U and Affeld K (2006). In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplification on the three-dimesional reconstruction and wall shear stress calculation. Biomed Eng Online 5: 39

    Article  PubMed  Google Scholar 

  23. Feldkamp LA, Davis LC and Kress JW (1984). Practical cone-beam algorithm. J Opt Soc Am 6: 612–619

    Article  Google Scholar 

  24. Polaris, Technical Specifications. http://www.ndigital.com/polaris-techspecs.php

  25. Wiles AD, Thompson DG, Frantz DD (2004) Accuracy assessment and interpretation for optical systems. Medical imaging 2007: visualization, image-guided procedures, and display, Proc of SPIE, vol 5367

  26. Eggert DW, Lorusso A and Fisher RB (1997). Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach Vis Appl 9: 272–290

    Article  Google Scholar 

  27. Mansour M, Rasche V, Picard MH and Ruskin JN (2006). Integration of three-dimensional coronary venous angiography with three-dimensional echocardiography for biventricular device implantation. Heart Rhythm 3: 1391–1392

    Article  PubMed  Google Scholar 

  28. Timinger H, Krueger S, Dietmayer K and Borgert J (2005). Motion compensated coronary interventional navigation by means of diaphragm tracking and elastic motion models. Phys Med Biol 50: 491–503

    Article  PubMed  Google Scholar 

  29. Eck K, Waechter I, Bredno J (2004) Synthesis of angiographic images using iterative approximation. In: Fitzpatrick JM, Sonka M (eds) Proc SPIE medical imaging: image processing, vol 5370, pp 163–171

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Rasche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasche, V., Mansour, M., Reddy, V. et al. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography. Int J CARS 2, 293–303 (2008). https://doi.org/10.1007/s11548-007-0142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-007-0142-0

Keywords

Navigation