Skip to main content
Log in

Characterization of a sequential pipeline approach to automatic tissue segmentation from brain MR Images

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

Quantitative analysis of gray matter and white matter in brain magnetic resonance imaging (MRI) is valuable for neuroradiology and clinical practice. Submission of large collections of MRI scans to pipeline processing is increasingly important. We characterized this process and suggest several improvements.

Materials and methods

To investigate tissue segmentation from brain MR images through a sequential approach, a pipeline that consecutively executes denoising, skull/scalp removal, intensity inhomogeneity correction and intensity-based classification was developed. The denoising phase employs a 3D-extension of the Bayes–Shrink method. The inhomogeneity is corrected by an improvement of the Dawant et al.’s method with automatic generation of reference points. The N3 method has also been evaluated. Subsequently the brain tissue is segmented into cerebrospinal fluid, gray matter and white matter by a generalized Otsu thresholding technique. Intensive comparisons with other sequential or iterative methods have been carried out using simulated and real images.

Results

The sequential approach with judicious selection on the algorithm selection in each stage is not only advantageous in speed, but also can attain at least as accurate segmentation as iterative methods under a variety of noise or inhomogeneity levels.

Conclusion

A sequential approach to tissue segmentation, which consecutively executes the wavelet shrinkage denoising, scalp/skull removal, inhomogeneity correction and intensity-based classification was developed to automatically segment the brain tissue into CSF, GM and WM from brain MR images. This approach is advantageous in several common applications, compared with other pipeline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang Z, MacFall JR and Harrington DP (1994). Parameter estimation and tissue segmentation from multispectral images. IEEE Trans Med Imaging 13: 441–449

    Article  PubMed  CAS  Google Scholar 

  2. Wells III WM, Grimson WEI, Kikinis R and Jolesz FA (1996). Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15: 429–442

    Article  PubMed  CAS  Google Scholar 

  3. Van Leemput K, Maes F, Vandermeulen D and Suetens P (1999). Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging 18: 885–896

    Article  PubMed  Google Scholar 

  4. Kovacevic N, Lobaugh NJ, Bronskill JM, Levine B, Feinstein A and Black SE (2002). A robust method for extraction and automatic segmentation of brain images. Neuroimage 17: 1087–1100

    Article  PubMed  CAS  Google Scholar 

  5. Schroeter P, Vesin JM, Langenberger T and Meuli R (1998). Robust parameter estimation of intensity distribution for brain magenetic resonance images. IEEE Trans Med Imaging 17: 172–186

    Article  PubMed  CAS  Google Scholar 

  6. Brandt ME, Bohan TP, Kramer LA and Fletcher JM (1994). Estimation of CSF, white and grey matter volumes in hydrocephatic children using fuzzy clustering of MR images. Comput Med Imaging Graph 18: 25–34

    Article  PubMed  CAS  Google Scholar 

  7. Zhu C and Jiang T (2003). Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images. Neuroimage 18: 685–696

    Article  PubMed  Google Scholar 

  8. Amato U, Larobina M, Antoniadis A and Alfano B (2003). Segmentation of magnetic resonance brain images through discriminant analysis. J Neurosci Methods 131: 65–74

    Article  PubMed  Google Scholar 

  9. Held K, Kops ER, Krause BJ, Wells WM III, Kikinis R and Muller-Gartner HW (1997). Markov random field segmentation of brain MR images. IEEE Trans Med Imaging 16: 878–886

    Article  PubMed  CAS  Google Scholar 

  10. Rajapakse JC, Giedd JN and Rapoport JL (1997). Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 16: 176–186

    Article  PubMed  CAS  Google Scholar 

  11. Rajapakse JC and Kruggel F (1998). Segmentation of MR images with intensity inhomogeneities. Image Vis Comput 16: 165–180

    Article  Google Scholar 

  12. Leemput KV, Maes F, Vandermeulen D and Suetens P (1999). Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18: 897–908

    Article  PubMed  Google Scholar 

  13. Zhang Y, Brady M and Smith S (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation–maximization algorithm. IEEE Trans Med Imaging 20: 45–57

    Article  PubMed  CAS  Google Scholar 

  14. Marroquin JL, Wemuri BC, Botello S, Calderon F and Fernandez-Bouzas A (2002). An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21: 934–945

    Article  PubMed  CAS  Google Scholar 

  15. Pham DL (2001). Spatial models for fuzzy clustering. Comput Vis Image Underst 84: 285–297

    Article  Google Scholar 

  16. Zijdenbos AP, Forghani R and Evans AC (2002). Automatic “pipeline” analysis of 3D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10): 1280–1291

    Article  PubMed  Google Scholar 

  17. Shattuck DW and Leahy RM (2002). BrainSuite: an automated cortical surface identification tool. Med Image Anal 6: 129–142

    Article  PubMed  Google Scholar 

  18. Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA and Leahy RM (2001). Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(3): 856–76

    Article  PubMed  CAS  Google Scholar 

  19. Brinkmann BH, Manduca A and Robb RA (2002). Optimized homomorphic unsharp masking for MR gray scale inhomogeneity correction. IEEE Trans Med Imaging 17: 161–171

    Article  Google Scholar 

  20. Dawant BM, Zijdenbos AP and Margolin RA (1993). Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Trans Med Imaging 12: 770–781

    Article  PubMed  CAS  Google Scholar 

  21. Smith SM (2002). Fast robust automated brain extraction. Hum Brain Mapp 17: 143–155

    Article  PubMed  Google Scholar 

  22. Donoho DL and Johnstone IM (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81: 425–455

    Article  Google Scholar 

  23. Hou ZJ (2003). Adaptive singular value decomposition in wavelet domain for image denoising. Pattern Recognit 36: 1747–1763

    Article  Google Scholar 

  24. Donoho DL (1995). Denoising by soft-thresholding. IEEE Trans Inform Theory 41: 613–627

    Article  Google Scholar 

  25. Chang SG, Yu B and Vetterli M (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Trans Image Process 9: 1532–1546

    Article  PubMed  CAS  Google Scholar 

  26. Wood JC and Johnson KM (1999). Wavelet packet denoising of MR images: importance of Rician noise at low SNR. Magn Reson Med 41: 631–635

    Article  PubMed  CAS  Google Scholar 

  27. Nowak RD (1999). Wavelet-based Rician noise removal forMRI. IEEE Trans Image Process 8: 1408–1419

    Article  PubMed  CAS  Google Scholar 

  28. Sled JG, Zijdenbos AP and Evans AC (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17: 87–97

    Article  PubMed  CAS  Google Scholar 

  29. Pham DL and Prince JL (1999). Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 18: 737–752

    Article  PubMed  CAS  Google Scholar 

  30. Ashburner J, Friston K, Holmes A, Poline JB (2000) Statistical parametric mapping. Technical Report, Wellcome Dept Cogn Neurol, Univ College, Longdon

  31. Hou Z (2006) A review on MR image intensity inhomogeneity correction. Inter J Biomed Imaging (special issue on mathematical modeling) Article ID 49515, 11 p. doi:10.1155/IJBI/2006/49515

  32. Hou ZJ, Huang S, Hu QM, Nowinski NL (2006) A fast and automatic method to correct intensity inhomogeneity in MR brain images. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’06) Part 2:324–331

  33. Sled JG, Zijdenbos AP and Evans AC (1997). A comparison of retrospective intensity non-uniformity correction methods for MRI. Lect Notes Comput Sci 1230: 459–464

    Google Scholar 

  34. Rice JA (1995). Mathematical statistics and data analysis, 2nd edn. Duxbury Press, California

    Google Scholar 

  35. Otsu N (1979). A threshold selection method from gray-level histograms. IEEE Trans Systems Man Cybernet 9: 62–66

    Article  Google Scholar 

  36. Hou Z, Hu Q and Nowinski WL (2006). On minimum variance thresholding. Pattern Recognit Lett 27: 1732–1743

    Article  Google Scholar 

  37. Hu Q, Hou Z and Wieslaw NL (2006). Supervised range-constrained thresholding. IEEE Trans Image Process 15: 228–240

    Article  PubMed  Google Scholar 

  38. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468 [See http://www.bic.mni.mcgill.ca/brainweb]

    Google Scholar 

  39. Moretti B, Fadili JM, Ruan S, Bloyet D and Maoyer B (2000). Phantom-based performance evaluation: application to brain segmentation from magnetic resonance images. Med Image Anal 4(2): 303–316

    Article  PubMed  CAS  Google Scholar 

  40. Coupe P, Yger P, Barillot C (2006) Fast non local means denoising for 3D MR images. In: International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI’06) Part 2:33–40

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Z., Huang, S. Characterization of a sequential pipeline approach to automatic tissue segmentation from brain MR Images. Int J CARS 2, 305–316 (2008). https://doi.org/10.1007/s11548-007-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-007-0144-y

Keywords

Navigation