Skip to main content

Advertisement

Log in

Positioning device for MRI-guided high intensity focused ultrasound system

  • Original article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Objective

A prototype magnetic resonance imaging (MRI)- compatible positioning device was used to move an MRI-guided high intensity focused ultrasound (HIFU) transducer. The positioning device has three user-controlled degrees of freedom that allow access to various targeted lesions.

Materials and methods

The positioning device was designed and fabricated using construction materials selected for compatibility with high magnetic fields and fast switching magnetic field gradients encountered inside MRI scanners. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, plastic sheets, brass screws, plastic pulleys and timing belts. The HIFU/MRI system includes the multiple subsystems (a) HIFU system, (b) MR imaging, (c) Positioning device (robot) and associate drivers, (d) temperature measurement, (e) cavitation detection, (f) MRI compatible camera, and (g) Soft ware.

Results

The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the robot to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully.

Conclusion

A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner’s table. The propagation of HIFU can use either a lateral or superior-inferior approach. Discrete and large lesions were created successfully with reproducible results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lynn JG, Zwemer RL, Chick AJ, Miller AE (1942) A new method for the generation and use of focused ultrasound in experimental biology. J Gen Phys 26: 179–193

    Article  Google Scholar 

  2. Fry W, Mosberg W, Barnard J, Fry F (1954) Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg 11: 471–478

    Article  PubMed  CAS  Google Scholar 

  3. Lizzi F, Coleman J, Driller J, Franzen L, Jakobiec F (1978) Experimental, ultrasonically induced lesions in the retina, choroid, and sclera. Invest Ophthalmol Vis Sci 205: 350–360

    Google Scholar 

  4. Chapelon JY, Margonari J, Vernier F, Gorry F, Ecochard R, Gelet A (1992) In vivo effects of high-intensity ultrasound on prostatic adenocarcinoma Dunning R3327. Cancer Res 52(22): 6353–6357

    PubMed  CAS  Google Scholar 

  5. ter Haar G, Sinnett D, Rivens I (1989) High intensity focused ultrasound—a surgical technique for the teatment of discrete liver tumors. Phys Med Biol 34(11): 1743–1750

    Article  PubMed  CAS  Google Scholar 

  6. Lele PP (1962) A simple method for production of trackless focal lesions with focused ultrasound. J Physiol 160: 494–512

    PubMed  CAS  Google Scholar 

  7. Vykhodtseva NI, Hynynen K, Damianou C (1994) Pulse duration and peak intensity during focused ultrasound surgery: theoretical and experimental effects in rabbit brain in vivo. Ultrasound Med Biol 20(9): 987–1000

    Article  PubMed  CAS  Google Scholar 

  8. Linke C, Carteensen E, Frizzel LA, Elbadawi A, Fridd CW (1973) Localized tissue destruction by high intensity focused ultrasound. Arch Surg 107: 887–891

    PubMed  CAS  Google Scholar 

  9. Hynynen K, Damianou CA, Colucci V, Unger E, Cline HH, Jolesz FA (1995) MR monitoring of focused ultrasonic surgery of renal cortex: experimental and simulation studies. J Magn Reson Imag 5(3): 259–266

    Article  CAS  Google Scholar 

  10. Bihrle R, Foster RS, Sanghvi NT, Fry FJ, Donohue JP (1994) High-intensity focused ultrasound in the treatment of prostatic tissue. Urology 43(2 Suppl): 21–26

    Article  PubMed  CAS  Google Scholar 

  11. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, Jolesz FA (2001) MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 219(1): 176–185

    PubMed  CAS  Google Scholar 

  12. Jolesz FA, Jakab PD (1991) Acoustic pressure wave generation within a magnetic resonance imaging system: potential medical applications. J Magn Reson Imag 1: 609–613

    Article  CAS  Google Scholar 

  13. Hynynen K, Darkazanli A, Damianou DC, Unger E, Schenck JF (1992) MRI-guided ultrasonic hyperthermia. RSNA meeting

  14. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16: 956–965

    Article  PubMed  CAS  Google Scholar 

  15. Hynynen K, Darkazanli A, Damianou CA, Unger E, Schenck JF (1994) The usefulness of a contrast agent and gradient-recalled acquisition in a steady-state imaging sequence for magnetic resonance imaging-guided noninvasive ultrasound surgery. Invest Radiol 29(10): 897–903

    Article  PubMed  CAS  Google Scholar 

  16. Kaiser WA, Fischer H, Vagner J, Selig M (2000) Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol 35: 513–519

    Article  PubMed  CAS  Google Scholar 

  17. Felden A, Vagner J, Hinz A, Fischer H, Pfleiderer SO, Reichenbach JR, Kaiser WA (2002) ROBITOM-robot for biopsy and therapy of the mamma. Biomed Tech 47: 2–5

    Article  Google Scholar 

  18. Tsekos NV, Shudy J, Yacoub E, Tsekos PV, Koutlas IG (2001) Development of a robotic device for MRI-guided interventions in the breast. In: second IEEE international symposium on bioinformatics and bioengineering, Washinghton, DC

  19. Larson BT, Erdman AG, Tsekos NV, Yacoub E, Tsekos PV, Koutlas IG (2004) Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast. ASME J Biomech Eng 126: 458–465

    Article  Google Scholar 

  20. Masamune K, Kobayashi E, Masutani Y et al (1995) Development of an MRI compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1: 242–248

    Article  PubMed  CAS  Google Scholar 

  21. Chinzei K, Miller K (2001) Towards MRI guided surgical manipulator. Med Sci Monit 7: 153–163

    PubMed  CAS  Google Scholar 

  22. Susil RC, Krieger A, Derbyshire JA, Tanacs A, Whitcomb LL, Fichtinger G, Atalar E (2003) System for MR image-guided prostate interventions: canine study. Radiology 228: 886–894

    Article  PubMed  Google Scholar 

  23. Jolesz FA, Morrison PR, Koran SJ, Kelley RJ, Hushek SG, Newman RW, Fried MP, Melzer A, Seibel RM, Jalahej H (1998) Compatible instrumentation for intraoperative MRI: expanding resources. J Magn Reson Imag 8: 8–11

    Article  CAS  Google Scholar 

  24. Cline H, Ettinger R, Rohling K, Watkins R, inventors (1993) General Electric Company, assignee, Magnetic resonance guided focussed ultrasound surgery. US Patent 5,247,935

  25. Ettinger R Cline H Watkins R, Rohling K, inventors (1994) General Electric Company, assignee, Magnetic resonance guided ultrasound therapy system with inclined track to move transducers in a small vertical space. US Patent 5,275,165

  26. Cline H Rohling K, Abeling W, inventors (1995) General Electric Company, assignee, Mechanical positioner for magnetic resonance guided ultrasound therapy. US Patent 5,443,068

  27. Yehezkeli O, Freundlich D, Magen N, Marantz C, Medan Y, Vitek S, Weinreb A, inventors (2003) TxSonics Ltd, assignee, Mechanical positioner for MRI guided ultrasound therapy system. US Patent 6,582,381

  28. Yehezkeli O, Freundlich D, Magen N, Marantz C, Medan Y, Vitek S, Weinreb A, inventors (2002) INSIGHTEC-TXSONICSLTD, assignee, Mechanical positioner for MRI guided ultrasound therapy system. WO Patent 0,209,812

  29. Tsekos N, inventor (2004) Regents of the University of Minnesota, assignee, MRI-guided interventional mammary procedures. US Patent 6,675,037

  30. Damianou C (2003) In vitro and in vivo ablation of porcine renal tissues using high intensity focused Ultrasound. Ultrasound Med Biol 29(9): 1321–1330

    Article  PubMed  Google Scholar 

  31. Damianou C, Pavlou M, Velev O, Kyriakou K, Trimikliniotis M (2004) High intensity focused ultrasound ablation of kidney guided by MRI. Ultrasound Med Biol 30(3): 397–404

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christakis Damianou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damianou, C., Ioannides, K. & Milonas, N. Positioning device for MRI-guided high intensity focused ultrasound system. Int J CARS 2, 335–345 (2008). https://doi.org/10.1007/s11548-007-0145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-007-0145-x

Keywords

Navigation