Skip to main content
Log in

CyberKnife: review of first 1,000 cases at a dedicated therapy center

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The development of the CyberKnife technology, a combination of image guidance and industrial robotics, led to a paradigm shift in radiosurgery.

Materials and methods

The CyberKnife Robotic Radiosurgery System consists of a 6-MV compact LINAC mounted on a computer-controlled robotic manipulator capable of 6 degrees of freedom, with a dedicated image-guidance system which acquires X-ray images during treatment. Apart from standard neurosurgical indications (i.e., acoustic neurinomas, meningiomas, brain metastases, etc.) radiosurgical applications are currently evolving to include extracranial indications such as tumors of the spine, pancreas, lung, and liver. We reviewed the indications and outcomes in the first 1,000 patients treated in the CyberKnife Center Munich. Single-dose treatment was chosen because published clinical studies have demonstrated high efficacy and low morbidity for intracranial and spinal tumors. A recent development in radiosurgery is breathing-triggered real-time correction for respiratory motion of tumors, which makes it possible to apply radiosurgical doses to moving targets. CyberKnife treatment is designed to be delivered on an outpatient basis, mostly consisting of a single treatment session lasting between 60 and 90 min. High quality imaging is of utmost importance for successful radiosurgical applications. For example, high-field MRI, multislice CT’s, PET and PET-CT imaging data must be integrated in the planning phase for optimal target definition.

Results

A total of 750 patients with brain tumors were treated at the CyberKnife Center Munich in cooperation with the Department of Neurosurgery of the University Munich. A total of 285 patients with brain metastases received 339 treatments for 780 brain metastases. The first 55 spinal tumor patients were analyzed and have a mean follow-up of 14 months (out of 200 spinal tumor patients treated at our facility). Efficacy was high and complications minimal for all patient groups.

Conclusion

CyberKnife radiosurgery technology may be used as a primary treatment modality or in multidisciplinary cancer therapy. Patient selection, high quality diagnostic imaging and consideration of alternative modes of therapy are key issues in optimizing the benefits of CyberKnife treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD (2006) Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 59(2): 244–254 doi:10.1227/01.NEU.0000223512.09115.3E

    Article  PubMed  Google Scholar 

  2. Adler JR Jr, Chang SD, Murphy MJ et al (1997) The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69(1–4 Pt 2): 124–128 doi:10.1159/000099863

    Article  PubMed  Google Scholar 

  3. Muacevic A, Drexler C,Wowra B et al (2007) Technical Description, phantom accuracy, and clinical feasibility for single-session lung radiosurgery using robotic image-guided real-time respiratory tumor tracking. Technol Cancer Res Treat 6(4):321–328

    PubMed  CAS  Google Scholar 

  4. Schweikard A, Shiomi H, Adler JA (2004) Respiration tracking in radiosurgery. Med Phys 31(8): 2738–2741 doi:10.1118/1.1774132

    Article  PubMed  Google Scholar 

  5. Kuo JS, Yu C, Petrovich Z, Apuzzo ML (2003) The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 53(5): 1235–1239 doi:10.1227/01.NEU.0000089485.47590.05

    Article  PubMed  Google Scholar 

  6. Muacevic A, Wowra B, Siefert A, Tonn JC, Steiger HJ, Kreth FW (2008) Microsurgery plus whole brain irradiation versus Gamma Knife surgery alone for treatment of single metastases to the brain: a randomized controlled multicentre phase III trial. J Neurooncol 87(3): 299–307 doi:10.1007/s11060-007-9510-4

    Article  PubMed  Google Scholar 

  7. Gerszten PC, Burton SA, Ozhasoglu C, Welch WC (2007) Radiosurgery for spinal metastases: clinical experience in 500 cases from a single institution. Spine 32(2): 193–199 doi:10.1097/01.brs.0000251863.76595.a2

    Article  PubMed  Google Scholar 

  8. Gerszten PC, Germanwala A, Burton SA et al (2005) Combination kyphoplasty and spinal radiosurgery: a new treatment paradigm for pathological fractures. J Neurosurg Spine 3(4): 296–301

    PubMed  Google Scholar 

  9. Gerszten PC, Ozhasoglu C, Burton SA et al (2004) CyberKnife frameless stereotactic radiosurgery for spinal lesions: clinical experience in 125 cases. Neurosurgery 55(1): 89–98

    PubMed  Google Scholar 

  10. Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, Tonn JC (2006) Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 5(4): 303–312 doi:10.3171/spi.2006.5.4.303

    Article  PubMed  Google Scholar 

  11. Nishizaki T, Saito K, Jimi Y et al (2006) The role of cyberknife radiosurgery/radiotherapy for brain metastases of multiple or large-size tumors. Minim Invasive Neurosurg 49(4): 203–209 doi:10.1055/s-2006-947998

    Article  PubMed  CAS  Google Scholar 

  12. Villavicencio AT, Lim M, Burneikiene S et al (2008) Cyberknife radiosurgery for trigeminal neuralgia treatment: a preliminary multicenter experience. Neurosurgery 62(3): 647–655 doi:10.1227/01.neu.0000317313.46826.dc

    Article  PubMed  Google Scholar 

  13. Stancanello J, Cavedon C, Francescon P et al (2007) BOLD fMRI integration into radiosurgery treatment planning of cerebral vascular malformations. Med Phys 34(4): 1176–1184 doi:10.1118/1.2710326

    Article  PubMed  Google Scholar 

  14. Teguh DN, Levendag PC, Noever I et al (2008) Treatment techniques and site considerations regarding dysphagia-related quality of life in cancer of the oropharynx and nasopharynx. Int J Radiat Oncol Biol Phys (Epub ahead of print)

  15. Degen JW, Gagnon GJ, Voyadzis JM et al (2005) CyberKnife stereotactic radiosurgical treatment of spinal tumors for pain control and quality of life. J Neurosurg Spine 2(5): 540–549

    PubMed  Google Scholar 

  16. Ryu SI, Chang SD, Kim DH et al (2001) Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 49(4): 838–846 doi:10.1097/00006123-200110000-00011

    Article  PubMed  CAS  Google Scholar 

  17. Fuss M, Thomas CR (2004) Stereotactic body radiation therapy: an ablative treatment option for primary and secondary liver tumors. Ann Surg Oncol 11(2): 130–138 doi:10.1245/ASO.2004.10.907

    Article  PubMed  Google Scholar 

  18. Hof H, Muenter M, Oetzel D, Hoess A, Debus J, Herfarth K (2007) Stereotactic single-dose radiotherapy (radiosurgery) of early stage nonsmall-cell lung cancer (NSCLC). Cancer 110(1): 148–155 doi:10.1002/cncr.22763

    Article  PubMed  Google Scholar 

  19. Onishi H, Shirato H, Nagata Y et al (2007) Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2(7 suppl 3): 94–100 doi:10.1097/JTO.0b013e318074de34

    Article  Google Scholar 

  20. Le QT, Loo BW, Cotrutz C et al (2006) Results of a phase I dose-escalation study using single-fraction stereotactic radiotherapy for lung tumors. J Thorac Oncol 1(8):802–809. doi:10.1097/01243894-200610000-00008

    Article  PubMed  Google Scholar 

  21. Nuyttens JJ, Prevost JB, Praag J (2006) Lung tumor tracking during stereotactic radiotherapy treatment with the CyberKnife: marker placement and early results. Acta Oncol 45(7): 961–965 doi:10.1080/02841860600902205

    Article  PubMed  CAS  Google Scholar 

  22. Wulf J, Hadinger U, Oppitz U, Thiele W, Flentje M (2003) Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver. Radiother Oncol 66(2): 141–150 doi:10.1016/S0167-8140(02)00372-9

    Article  PubMed  Google Scholar 

  23. Whyte RI, Crownover R, Murphy MJ, Martin DP (2003) Stereotactic radiosurgery for lung tumors: preliminary report of a phase trial. Ann Thorac Surg 75(4): 1097–1101 doi:10.1016/S0003-4975(02)04681-7

    Article  PubMed  Google Scholar 

  24. Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5(4): 263–277

    Article  PubMed  CAS  Google Scholar 

  25. Maldonado A, González-Alenda FJ, Alonso M, Sierra JM (2007) PET-CT in clinical oncology. Clin Transl Oncol 9(8): 494–505 doi:10.1007/s12094-007-0093-5

    Article  PubMed  CAS  Google Scholar 

  26. Collins CD (2007) PET/CT in oncology: for which tumours is it the reference standard? Cancer Imaging 1(7 Spec No A):S77–S87

  27. Bomanji JB, Costa DC, Ell PJ (2001) Clinical role of positron emission tomography in oncology. Lancet Oncol 2(3): 157–164 doi:10.1016/S1470-2045(00)00257-6

    Article  PubMed  CAS  Google Scholar 

  28. Schweikard A, Shiomi H, Adler JA (2005) Respiration tracking in radiosurgery without fiducials. Int JMed Robot 1(2):19–27. doi:10.1002/rcs.38

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Muacevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muacevic, A., Wowra, B. & Reiser, M. CyberKnife: review of first 1,000 cases at a dedicated therapy center. Int J CARS 3, 447–456 (2008). https://doi.org/10.1007/s11548-008-0246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-008-0246-1

Keywords

Navigation