Skip to main content

Advertisement

Log in

Simultaneous cutting of coupled tetrahedral and triangulated meshes and its application in orbital reconstruction

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Introduction

Recently, advances in imaging techniques for diagnostics and associated technologies have led to an improved preoperative planning for craniomaxillofacial surgeons. In particular, the application of navigation-aided procedures for orbital reconstruction has proved to be essential. Preforming orbital implants for orbital floor reconstruction and determining overcorrection with regard to the orbital floor reconstruction could be achieved using preoperative planning. It has turned out that the computation of soft tissue cuts is an essential prerequisite for the realistic placement of implants.

Methods

We propose a simulation framework that allows for the static and dynamic cutting of soft and hard tissue representations. The framework comprises components to model tissue deformation, cutting of tissue and interaction between the physical bodies. Furthermore, volume and surface representations are decoupled which allows for an independent scaling in the complexity of the representations and, therefore, in the simulation and visualisation performance. In contrast to many other cutting approaches, our algorithm handles both representations simultaneously.

Conclusion

The framework is used to simulate the realistic insertion of a preformed orbital implant model through the soft tissue cut and the prediction of the postoperative eye bulb position. Experiments show that the framework can be used to determine overcorrection and to preform orbital implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann J, Cornelius CP, Groten M et al (1998) Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg 101(3): 604–612

    Article  PubMed  CAS  Google Scholar 

  2. Burm JS, Chung CH, Oh SJ (1999) Pure orbital blowout fracture: new concepts and importance of medial orbital blowout fracture. Plast Reconstr Surg 103(7): 1839–1849

    Article  PubMed  CAS  Google Scholar 

  3. Manson PN, Ruas EJ, Iliff NT (1987) Deep orbital reconstruction for correction of post-traumatic enophthalmos. Clin Plast Surg 14(1): 113–121

    PubMed  CAS  Google Scholar 

  4. Amrith S, Saw SM, Lim TC, Lee TK (2000) Ophthalmic involvement in cranio-facial trauma. J Craniomaxillofac Surg 28(3): 140–147

    PubMed  CAS  Google Scholar 

  5. Gruss JS (1985) Naso-ethmoid-orbital fractures: classification and role of primary bone grafting. Plast Reconstr Surg 75(3): 303–317

    PubMed  CAS  Google Scholar 

  6. Schmelzeisen R, Husstedt H, Zumkeller M, Rittierodt M (1997) Preserving and improving the profile in primary and secondary orbital reconstruction. Mund Kiefer Gesichtschir 1(Suppl 1): S87–S89

    PubMed  Google Scholar 

  7. Habal MB (1992) Bone grafting the orbital floor for posttraumatic defects. J Craniofac Surg 3(3): 175–180

    Article  PubMed  CAS  Google Scholar 

  8. Goldberg RA, Garbutt M, Shorr N (1993) Oculoplastic uses of cranial bone grafts. Ophthalmic Surg 24(3): 190–196

    PubMed  CAS  Google Scholar 

  9. Hammer B, Prein J (1993) Reconstructive surgery in the area of the orbit. Klin Monatsbl Augenheilkd 202(5): 458–459

    Article  PubMed  CAS  Google Scholar 

  10. Howaldt HP, Zubcov A (1994) Orbital reconstruction with tabula externa for correction of post-traumatic enophthalmos. Fortschr Kiefer Gesichtschir 39: 64–66

    PubMed  CAS  Google Scholar 

  11. Koppel DA, Foy RH, McCaul JA et al (2003) The reliability of “Analyze” software in measuring orbital volume utilizing CT-derived data. J Craniomaxillofac Surg 31(2): 88–91

    PubMed  Google Scholar 

  12. Hammer B, Prein J (1995) Correction of post-traumatic orbital deformities: operative techniques and review of 26 patients. J Craniomaxillofac Surg 23(2): 81–90

    PubMed  CAS  Google Scholar 

  13. Parsons GS, Mathog RH (1988) Orbital wall and volume relationships . Arch Otolaryngol Head Neck Surg 114(7): 743–747

    PubMed  CAS  Google Scholar 

  14. Eufinger H, Wittkampf AR, Wehmoller M, Zonneveld FW (1998) Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer-aided surgery. J Craniomaxillofac Surg 26(6): 373–378

    PubMed  CAS  Google Scholar 

  15. Heissler E, Fischer FS, Bolouri S et al (1998) Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg 27(5): 334–338

    Article  PubMed  CAS  Google Scholar 

  16. Hoffmann J, Cornelius CP, Groten M et al (1998) Using individually designed ceramic implants for secondary reconstruction of the bony orbit. Mund Kiefer Gesichtschir 2(Suppl 1): S98–S101

    Article  PubMed  Google Scholar 

  17. Holck DE, Boyd EM Jr, Ng J, Mauffray RO (1999) Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6): 1214–1218

    Article  PubMed  CAS  Google Scholar 

  18. Perry M, Banks P, Richards R et al (1998) The use of computer-generated three-dimensional models in orbital reconstruction. Br J Oral Maxillofac Surg 36(4): 275–284

    Article  PubMed  CAS  Google Scholar 

  19. Gellrich NC, Schramm A, Hammer B et al (2002) Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg 110(6): 1417–1429

    Article  PubMed  Google Scholar 

  20. Schmelzeisen R, Gellrich NC, Schoen R et al (2004) Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury 35(10): 955–962

    Article  PubMed  Google Scholar 

  21. Hassfeld S, Muhling J, Zoller J (1995) Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg 24(1 Pt 2): 111–119

    Article  PubMed  CAS  Google Scholar 

  22. Marmulla R, Niederdellmann H (1998) Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg 26(1): 68–69

    PubMed  CAS  Google Scholar 

  23. Watzinger F, Wanschitz F, Wagner A et al (1997) Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg 25(4): 198–202

    PubMed  CAS  Google Scholar 

  24. Wirtz CR, Knauth M, Hassfeld S et al (1998) Neuronavigation–first experiences with three different commercially available systems. Zentralbl Neurochir 59(1): 14–22

    PubMed  CAS  Google Scholar 

  25. Székely G, Brechbühler C, Hutter R, Rhomberg A, Ironmonger N, Schmid P (2000) Modelling of soft tissue deformation for laparoscopic surgery simulation. J Med Image Anal 4(1): 57–66

    Article  Google Scholar 

  26. Harders M, Bachofen D, Bajka M, Grassi M, Heidelberger B, Sierra R, Spaelter U, Steinemann D, Teschner M, Tuchschmid S, Zátonyi J, Székely G (2008) Virtual reality based simulation of hysteroscopic interventions. Presence Teleoperators Virtual Environ 17(5): 441–462

    Google Scholar 

  27. Delingette H, Subsol G, Cotin S, Pignon J (1994) A craniofacial surgery testbed. INRIA, Rapport de recherge, N°2199

  28. Keeve E, Girod S, Schaller S, Girod B (1996) Adaptive surface data compressions. J Signal Proces 59(2): 211–220

    Article  Google Scholar 

  29. Keeve E, Girod S, Girod B (1996) Computer-aided craniofacial surgery. In: Computer assisted radiology, pp 26–29

  30. Keeve E, Jansen T, Krol Z, Ritter L, von Rymon-Lipinski B, Sader R, Zeilhofer H-F, Zerfass P (2001) JULIUS: an extendable software framework for surgical planning and image-guided navigation. In: Proc medical image computing and computer-assisted intervention, pp 1336–1337

  31. Keeve E, Girod S, Augustin A, Binner A, Girod B (1996) Interactive craniofacial surgery simulation. In: Proc 3D image analysis and synthesis, pp 219–224

  32. Bruyns C, Montgomery K (2002) Generalized interactions using virtual tools within the spring framework: Cutting. In: Medicine meets virtual reality, pp 79–85

  33. Bruyns C, Senger S, Wildermuth S, Montgomery K, Boyle R (2001) Real-time interactions using virtual tools. MICCAI 1349–1351

  34. Bruyns C, Montgomery K (2002) Generalized interactions using virtual tools within the spring framework: Probing, piercing, cauterizing and ablating. In: Proc medicine meets virtual reality, pp 74–78

  35. Montgomery K, Bruyns C, Brown J, Sorkin S, Mazzella F, Thonier G, Tellier A, Lerman B, Menon A et al (2002) Spring: a general framework for collaborative, real-time surgical simulation. In: Westwood J(eds) Medicine meets virtual reality. IOS Press, Amsterdam

  36. Spillmann J, Wagner M, Teschner M (2006) Robust tetrahedral meshing of triangle soups. In: Proc vision, modeling, visualization, pp 9–16

  37. Müller M, Gross M (2004) Interactive virtual materials. In: Proc graphics interface, pp 239–246

  38. Nienhuys H-W, van der Stappen AF (2000) Combining finite element deformation with cutting for surgery simulations. In: Proc eurographics, pp 274–277

  39. Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. J Visual Comput 16(8): 437–452

    Article  Google Scholar 

  40. Steinemann D, Harders M, Gross M, Székely G (2006) Hybrid cutting of deformable solids. In: Proc virtual reality conferenc, pp 35–42

  41. Becker M, Teschner M (2007) Robust and efficient estimation of elasticity parameters using the linear finite element method. In: Proc simulation and visualization, pp 15–28

  42. Müller M, Teschner M, Gross M (2004) Physically-based simulation of objects represented by surface meshes. In: Proc computer graphics international, pp 26–33

  43. Serby D, Harders M, Székely G (2001) A new approach to cutting into finite element models. In: Medical image computing and computer-assisted intervention, pp 425–433

  44. Teschner M, Heidelberger B, Mueller M, Pomeranets D, Gross M (2003) Optimized spatial hashing for collision detection of deformable objects. In: Proc vision, modeling, visualization, pp 47–54

  45. Heidelberger B, Teschner M, Keiser R, Mueller M, Gross M (2004) Consistent penetration depth estimation for deformable collision response. In: Proc vision, modeling, visualization, pp 339–346

  46. Gissler M, Becker M, Teschner M (2006) Local constraint methods for deformable objects. In: Proc virtual reality interactions and physical simulations, pp 25–32

  47. Bielser D, Maiwald VA, Gross MH (1999) Interactive cuts through three-dimensional soft tissue. J Comput Graph Forum 18(3): 31–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Gissler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, M.C., Gissler, M., Asal, M. et al. Simultaneous cutting of coupled tetrahedral and triangulated meshes and its application in orbital reconstruction. Int J CARS 4, 409–416 (2009). https://doi.org/10.1007/s11548-009-0353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0353-7

Keywords

Navigation