Skip to main content

Advertisement

A geodesic deformable model for automatic segmentation of image sequences applied to radiation therapy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Organ motion should be taken into account for image-guided fractionated radiotherapy. A deformable segmentation and registration method was developed for inter-and intra-fraction organ motion planning and evaluation.

Methods

Energy minimizing active models were synthesized for tracking a set of organs delineated by regions of interest (ROI) in radiotherapy treatment. The initial model consists of a surface deformed to match the ROI contour by geometrical properties, following a heat flow model. The deformable segmentation model was tested using a Shepp-Logan head CT simulation, and different quantitative metrics were applied such as ROC analysis, Jaccard index, Dice coefficient and Hausdorff distance.

Results

Experimental evaluation of automated versus manual segmentation was done for the cardiac, thoracic and pelvic regions. The method has been quantitatively validated, obtaining an average of 93.3 and 99.2% for the sensitivity and specificity, respectively, 90.79% for the Jaccard index, 95.15% for the Dice coefficient and 0.96% mm for the Hausdorff distance.

Conclusions

Model-based deformable segmentation was developed and tested for image-guided radiotherapy treatment planning. The method is efficient, robust and has sufficient accuracy for 2D CT data without markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Foskey M, Davis B, Goyal L, Chang S, Chaney E, Strehl N, Tomei S, Rosenman J, Joshi S (2005) Large deformation three-dimensional image registration in image-guided radiation therapy. Phys Med Biol 50: 5869–5892

    Article  PubMed  Google Scholar 

  2. Webb S (2006) Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy?. Phys Med Biol 51: 1449–1462

    Article  PubMed  CAS  Google Scholar 

  3. Costa M, Delingette H, Ayache N (2007) Automatic segmentation of the bladder using deformable models. In: Proceedings of 4th IEEE international symposium on biomedical imaging: from nano to macro. ISBI, Arlington, VA, pp 904–907

  4. Lee C, Chung P (2004) Identifying abdominal organs using robust fuzzy inference model. In: IEEE international conference on networking, sensing and control, vol 2. Washington, DC, USA, pp 1289–1294

  5. Banik S, Rangayyan R, Boag G (2009) Landmarking and segmentation of 3D CT images. Synthesis lectures on biomedical engineering, vol 4, issue 1. Morgan and Claypool Publishers, New Jersey, pp 1–170

  6. Collier D, Burnett S, Amin M (2003) Assessment of consistency in contouring of normal-tissue anatomic structures. J Appl Clin Med Phys 4(1): 17–24

    Article  PubMed  Google Scholar 

  7. Fisher M, Su Y, Aldridge R (2008) 9. Series in medical physics and biomedical engineering. In: Some applications of intelligent systems in cancer treatment: a review. Intelligent and adaptive systems in medicine. Taylor & Francis Group, London, pp 283–303

  8. van Herk M, Remeijer P, PRasch C, Lebesque J (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47(4): 1121–1135

    Article  PubMed  Google Scholar 

  9. BIR (2003) Geometric uncertainties in radiotherapy: defining the planning target volume. British Institute of Radiology

  10. van de Bunt L, Jrgenliemk-Schulz IM, de Kort G, Roesink JM, Tersteeg R, van der Heide U (2008) Motion and deformation of the target volumes during imrt for cervical cancer: what margins do we need?. Radiother Oncol 88: 233–240

    Article  PubMed  Google Scholar 

  11. Kerkhof EM, van der Put RW, Raaymakers B, van der Heide U, Jrgenliemk-Schulz I, Lagendijk J (2009) Intrafraction motion in patients with cervical cancer: the benefit of soft tissue registration using mri. Radiother Oncol 93: 115–121

    Article  PubMed  Google Scholar 

  12. Murena L, Redpathb A, Lordc H, McLaren D (2007) Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins. Radiother Oncol 84: 307–313

    Article  Google Scholar 

  13. Su Y, Fisher M, Rowland RS (2007) Marker-less intra-fraction organ motion tracking using hybrid asm. Int J CARS 2: 231–243

    Article  Google Scholar 

  14. Haas B, Coradi T, Scholz M, Kunz P, Huber M, Oppitz U, André L, Lengkeek V, Huyskens D, van Esch A, Reddick R (2008) Assessment of consistency in contouring of normal-tissue anatomic structures. Phys Med Biol 53: 1751–1771

    Article  PubMed  CAS  Google Scholar 

  15. Shi F, Yang J, Zhu Y (2009) Automatic segmentation of bladder in ct images. J Zhejiang Univers Sci A 10(2): 239–246

    Article  Google Scholar 

  16. Camapum J, Silva A, Freitas A, Bassani H (2004) Segmentation of clinical structures from images of the human pelvic area. In: Proceedings of 17th Brazilian Symposium on computer graphics and image processing, SIBGRAPI’04, pp 10–16

  17. Bueno G, Fisher M, Burnham K (2001) Automatic segmentation of clinical structures for rtp: Evaluation of a morphological approach. In: Proceedings of medical image understanding and analysis. London, UK, pp 73–76

  18. Mazonakis M, Damilakis J, Varveris H, Prassopoulos P, Gourtsoyiannis N (2001) Image segmentation in treatment planning for prostate cancer using the region growing technique. British J Radiol 74: 243–249

    CAS  Google Scholar 

  19. Gibou F, Levy D, Cádenas C (2005) Partial differential equations based segmentation for radiotherapy treatment planning. Math Biosci Eng 2(2): 209–226

    PubMed  Google Scholar 

  20. Rousson M, Khamene A, Diallo M (2005) Constrained surface evolutions for prostate and bladder segmentation in CT images. Lecture notes in computer science, vol 3765. Springer, Berlin, pp 251–260

  21. Bueno G, Martínez A, Adán A (2004) Fuzzy-snake segmentation of anatomical structures applied to ct images. Lecture notes in computer science 2(3212): 33–42

    Article  Google Scholar 

  22. Ripoche X, Atif J, Osorio A (2004) A 3d discrete deformable model guided by mutual information for medical image segmentation. In: Proceedings of the Medical Imaging Conference, SPIE, San Diego, USA

  23. Terzopoulos D, Fleischer K (1988) Deformable models, the visual computer. Springer, Berlin

    Google Scholar 

  24. Kass M, Witkin A, Terzopoulos D (1998) Snakes: active contour models. Int J Comput Vis, pp 321–331

  25. Bueno G (2008) 10. In: Fuzzy systems and deformable models. Series in medical physics and biomedical engineering, Intelligent and Adaptive Systems in Medicine. Taylor & Francis Group, London, pp 305–329

  26. Osher S, Paragios N (2003) Geometric level set methods in imaging, vision and graphics. Springer, New York

    Google Scholar 

  27. Lee M, Park S, Cho W, Kim S, Jeong C (2008) Segmentation of medical images using a geometric deformable model and its visualization. Can J Elect Comput Eng 33: 15–19

    Article  Google Scholar 

  28. Malladi R, Sethian J, Vemuri B (1995) Shape modeling with front propagation: a level set approach. IEEE Trans on PAMI 17(4): 158–175

    Google Scholar 

  29. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1): 61–79

    Article  Google Scholar 

  30. Paragios N (2002) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Nucl Sci 21(3): 21–43

    Google Scholar 

  31. Shepp L, Logan B (1974) The fourier reconstruction of a head section. IEEE Trans Med Imaging 22(6): 773–776

    Google Scholar 

  32. Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search the metric space approach. Springer, Berlin

    Google Scholar 

  33. Huttenlocher D, Klanderman G, Rucklidge W (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9): 850–863

    Article  Google Scholar 

  34. Munkres J (1999) Topology. 2. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  35. Bueno G, Déniz O, Carrascosa C, Delgado J, Brualla L (2009) Fast monte carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36(11): 5162–5174

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno, G., Déniz, O., Salido, J. et al. A geodesic deformable model for automatic segmentation of image sequences applied to radiation therapy. Int J CARS 6, 341–350 (2011). https://doi.org/10.1007/s11548-010-0513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0513-9

Keywords