Skip to main content

Advertisement

Log in

Interactive navigation of segmented MR angiograms using simultaneous curved planar and volume visualizations

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Interactive visualization is required to inspect and monitor the automatic segmentation of vessels derived from contrast-enhanced magnetic resonance angiography (CE-MRA). A dual-view visualization scheme consisting of curved planar reformation (CPR) and direct volume rendering (DVR) was developed for this purpose and tested.

Methods

A dual view visualization scheme was developed using the vessel pathline for both camera position and rotation in 3D, greatly reducing the degrees of freedom (DOF) required for navigation. Pathline-based navigation facilitates coupling of the CPR and DVR views, as local position and orientation can be matched precisely. The new technique was compared to traditional techniques in a user study. Layperson users were required to perform a visual search task that involves checking for (minor) errors in segmentations of MRA data from a software phantom. The task requires the user to examine both views.

Results

Pathline-based navigation and coupling of CPR and DVR provide user speed performance improvements in a vessel inspection task. Interactive MRA visualization with this method, where rotational degrees of freedom were reduced, had no negative effect.

Conclusions

The DOF reduction achieved by the new navigation technique is beneficial to user performance. The technique is promising and merits comprehensive evaluation in a realistic clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach S, Moshage W, Ropers D, Bachmann K (1998) Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron-beam CT of the coronary arteries. Am J Roentgenol 170(4): 895–899

    CAS  Google Scholar 

  2. Adame I, de Koning PJH, Lelieveldt BPF, Wasserman BA, Reiber JHC, van der Geest RJ (2006) An integrated automated analysis method for quantifying vessel stenosis and plaque burden from carotid MRI images: combined postprocessing of MRA and vessel wall MR. Stroke 37(8): 2162–2164

    Article  PubMed  Google Scholar 

  3. Adame IM, van der Geest RJ, Bluemke DA, Lima JA, Reiber JH, Lelieveldt BP (2006) Automatic vessel wall contour detection and quantification of wall thickness in in-vivo MR images of the human aorta. J Magn Reson Imaging 24(3): 595–602

    Article  PubMed  Google Scholar 

  4. Bade R, Ritter F, Preim B (2005) Usability comparison of mouse-based interaction techniques for predictable 3D rotation. In: Smart graphics 2005, Springer, pp 138–150

  5. Boskamp T, Rinck D, Link F, Kümmerlen B, Stamm G, Mildenberger P (2004) New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24(1): 287–297

    Article  PubMed  Google Scholar 

  6. Buchholz H, Bohnet J, Döllner J (2005) Smart navigation strategies for virtual landscapes. In: Trends in real-time visualization and participation, Wichmann, pp 124–131

  7. Guzman R, Oswald H, Barth A, de Koning P, Remonda L, Lövblad KO, Schroth G (2001) Clinical validation of quantitative carotid MRA. Int Congress Series 1230: 981–985

    Article  Google Scholar 

  8. Johnson C (2004) Top scientific visualization research problems. IEEE Comput Graph Appl 24(4): 13–17

    Article  PubMed  Google Scholar 

  9. Kanitsar A (2004) Curved planar reformation for vessel visualization. Ph.D. thesis, Vienna University of Technology, Vienna, Austria

  10. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6): 819–845

    Article  PubMed  Google Scholar 

  11. Moise A, Atkins MS, Rohling R (2005) Evaluating different radiology workstation interaction techniques with radiologists and laypersons. J Digit Imaging 18(2): 116–130

    Article  PubMed  CAS  Google Scholar 

  12. Mueller DC, Maeder AJ, O’Shea PJ (2005) Enhancing direct volume visualisation using perceptual properties. In: Proceedings SPIE, vol 5744, pp 446–454

  13. North C, Shneiderman B (1997) A taxonomy of multiple window coordinations. Tech Rep CS-TR-3854. University of Maryland

  14. Plumlee M, Ware C (2003) Integrating multiple 3D views through frame-of-reference interaction. In: CMV2005, p 34

  15. Preim B, Oeltze S (2007) 3D visualization of vasculature: an overview. In: Visualization in medicine and life sciences, Springer, pp 39–60

  16. Randoux B, Marro B, Koskas F, Duyme M, Sahel M, Zouaoui A, Marsault C (2001) Prospective comparison of CT, three-dimensional gadolinium-enhanced MR, and conventional angiography. Radiology 220(1): 179–185

    PubMed  CAS  Google Scholar 

  17. Rolland JP, Muller KE, Helvig CS (1995) Visual search in medical images: a new methodology to quantify saliency. In: Proceedings SPIE, vol 2436, pp 40–48

  18. Russo Dos Santos C, Gros P, Abel P, Loisel D, Trichaud N, Paris JP (2000) Metaphor-aware 3D navigation. In: Proceedings of the IEEE symposium on information visualization, p 155

  19. van Schooten BW, van Dijk EMAG, Nijholt A, Reiber JHC (2010) Evaluating automatic warning cues for visual search in vascular images. In: IUI 2010, pp 393–396

  20. van Schooten BW, van Dijk EMAG, Suinesiaputra A, Reiber JHC (2010) Effectiveness of visualisations for detection of errors in segmentation of blood vessels. In: IVAPP 2010, pp 77–84

  21. van Schooten BW, van Dijk EMAG, Zudilova-Seinstra EV, de Koning PJH, Reiber JHC (2009) Evaluating visualisation and navigation techniques for interpretation of MRA data. In: GRAPP 2009, pp 405–408

  22. Stefani O, Mager R, Mueller-Spahn F, Sulzenbacher H, Bekiaris E, Wiederhold BK, Patel H, Bullinger AH (2005) Cognitive ergonomics in virtual environments: development of an intuitive and appropriate input device for navigating in a virtual maze. Appl Psychophysiol Biofeedback 30(3): 259–269

    Article  PubMed  Google Scholar 

  23. Subašić M, Lončarić S, Sorantin E (2005) Model-based quantitative AAA image analysis using a priori knowledge. Comput Methods Programs Biomed 80(2): 103–114

    Article  PubMed  Google Scholar 

  24. U-King-Im JM, Trivedi RA, Graves MJ, Higgins JJ, Cross B, Tom D, Hollingworth W, Eales H, Warburton EA, Kirkpatrick PJ, Antoun NM, Gillard JH (2004) Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology 62(8): 1282–1290

    PubMed  CAS  Google Scholar 

  25. Wang Baldonado MQ, Woodruff A, Kuchinsky A (2000) Guidelines for using multiple views in information visualization. In: Advanced visual interfaces, pp 110–119

  26. Ware C, Mitchell P (2008) Visualizing graphs in three dimensions. ACM Trans Appl Percept 5(1): 1–15

    Article  Google Scholar 

  27. Zhai S (1998) User performance in relation to 3D input device design. SIGGRAPH Comput Graph 32(4): 50–54

    Article  Google Scholar 

  28. Zudilova-Seinstra EV, de Koning PJH, Suinesiaputra A, van Schooten BW, van der Geest RJ, Reiber JHC, Sloot PMA (2009) Evaluation of 2D and 3D glove input applied to medical image analysis. Int J Hum Comput Stud 68(6): 355–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. W. van Schooten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Schooten, B.W., van Dijk, E.M.A.G., Suinesiaputra, A. et al. Interactive navigation of segmented MR angiograms using simultaneous curved planar and volume visualizations. Int J CARS 6, 591–599 (2011). https://doi.org/10.1007/s11548-010-0534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-010-0534-4

Keywords