Abstract
Purpose
Most ultrasound imaging systems assume a pre-determined sound propagation speed for imaging. However, a mismatch between assumed and real sound speeds can lead to spatial shift and defocus of ultrasound image, which may limit the applicability of ultrasound imaging. The estimation of real sound speed is important for improving positioning accuracy and focus quality of ultrasound image.
Method
A novel method using speckle analysis of ultrasound image is proposed for average sound speed estimation. Firstly, dynamic receive beam forming technology is employed to form ultrasound images. These ultrasound images are formed by same pre-beam formed radio frequency data but using different assumed sound speeds. Secondly, an improved speckle analysis method is proposed to evaluate focus quality of these ultrasound images. Thirdly, an iteration strategy is employed to locate the desired sound speed that corresponds to the best focus quality image.
Results
For quantitative evaluation, a group of ultrasound data with 20 different structure patterns is simulated. The comparison of estimated and simulated sound speeds shows speed estimation errors to be −0.7 ± 2.54 m/s and −1.30 ± 5.15 m/s for ultrasound data obtained by 128- and 64-active individual elements linear arrays, respectively. Furthermore, we validate our method via phantom experiments. The sound speed estimation error is −1.52 ± 8.81 m/s.
Conclusion
Quantitative evaluation proves that proposed method can estimate average sound speed accurately using single transducer with single scan.
Similar content being viewed by others

References
Duck F (1990) Physical properties of tissue : a comprehensive reference book. Academic Press
Anderson M, McKeag M, Trahey G (2000) The impact of sound speed errors on medical ultrasound imaging. J Acoust Soc Am 107: 3540–3548
Albert G (2000) The effect of acoustic velocity on phantom measurements. Ultrasound Med Biol 26(7): 1133–1143. doi:10.1016/s0301-5629(00)00248-9
Robinson DE, Ophir J, Wilson LS, Chen CF (1991) Pulse-echo ultrasound speed measurements: progress and prospects. Ultrasound Med Biol 17(6): 633–646. doi:10.1016/0301-5629(91)90034-t
Robinson DE, Chen F, Wilson LS (1982) Measurement of velocity of propagation from ultrasonic pulse-echo data. Ultrasound Med Biol 8(4): 413–420. doi:10.1016/s0301-5629(82)80009-4
Robinson DE, Chen CF, Wilson LS (1983) Image matching for pulse echo measurement of ultrasonic velocity. Image Vis Comput 1(3): 145–151. doi:10.1016/0262-8856(83)90066-5
Krucker JF, Fowlkes JB, Carson PL (2002) Sound speed estimation using ultrasound image registration. In: IEEE international symposium on biomedical imaging, pp 437–440
Krucker JF, Fowlkes JB, Carson PL (2004) Sound speed estimation using automatic ultrasound image registration. IEEE Trans Ultrasonics Ferroelectr Frequency Control 51(9): 1095–1106
Anderson M, Trahey G (1998) The direct estimation of sound speed using pulse-echo ultrasound. J Acoust Soc Am 104: 3099–3106
Napolitano D, Chou C-H, McLaughlin G, Ji T-L, Mo L, DeBusschere D, Steins R (2006) Sound speed correction in ultrasound imaging. Ultrasonics 44(Suppl 1): e43–e46. doi:10.1016/j.ultras.2006.06.061
Cho MH, Kang LH, Kim JS, Lee SY (2009) An efficient sound speed estimation method to enhance image resolution in ultrasound imaging. Ultrasonics 49(8): 774–778. doi:10.1016/j.ultras.2009.06.005
Shin H-C, Prager R, Ng J, Gomersall H, Kingsbury N, Treece G, Gee A (2009) Sensitivity to point-spread function parameters in medical ultrasound image deconvolution. Ultrasonics 49(3): 344–357. doi:10.1016/j.ultras.2008.10.005
Shin H-C, Prager R, Gomersall H, Kingsbury N, Treece G, Gee A (2010) Estimation of average speed of sound using deconvolution of medical ultrasound data. Ultrasound Med Biol 36(4): 623–636. doi:10.1016/j.ultrasmedbio.2010.01.011
Shin H-C, Prager R, Gomersall H, Kingsbury N, Treece G, Gee A (2010) Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution. Ultrasonics 50(7): 716–725. doi:10.1016/j.ultras.2010.02.008
Chen Q, Zagzebski JA (2004) Simulation study of effects of speed of sound and attenuation on ultrasound lateral resolution. Ultrasound Med Biol 30(10): 1297–1306. doi:10.1016/j.ultrasmedbio.2004.07.012
Yadong L, Zagzebski JA (1999) A frequency domain model for generating B-mode images with array transducers. IEEE Trans Ultrasonics Ferroelectr Frequency Control 46(3): 690–699
Krotkov E (1988) Focusing. Int J Comput Vis 1(3): 223–237. doi:10.1007/bf00127822
Ghose S, Oliver A, Martí R, Lladó X, Freixenet J, Mitra J, Vilanova J, Comet-Batlle J, Meriaudeau F (2012) Statistical shape and texture model of quadrature phase information for prostate segmentation. Int J Comput Assist Radiol Surg 7(1): 43–55. doi:10.1007/s11548-011-0616-y
Mercier L, Fonov V, Haegelen C, Del Maestro R, Petrecca K, Collins D (2012) Comparing two approaches to rigid registration of three-dimensional ultrasound and magnetic resonance images for neurosurgery. Int J Comput Assist Radiol Surg 7(1): 125–136. doi:10.1007/s11548-011-0620-2
Johan TM (2003) Ultrasonic speckle formation, analysis and processing applied to tissue characterization. Pattern Recognit Lett 24(4–5): 659–675. doi:10.1016/s0167-8655(02)00173-3
Wagner RF, Smith SW, Sandrik JM, Lopez H (1983) Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrasonics 30(3): 156–163
Jensen JA, Svendsen NB (1992) Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrasonics Ferroelectr Frequency Control 39(2): 262–267
Jensen J (1996) Field: a program for simulating ultrasound systems. Med Biol Eng Comput 34: 351–353
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qu, X., Azuma, T., Liang, J.T. et al. Average sound speed estimation using speckle analysis of medical ultrasound data. Int J CARS 7, 891–899 (2012). https://doi.org/10.1007/s11548-012-0690-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-012-0690-9