Abstract
Purpose
Conventional navigation systems for minimally invasive orthopedic surgery require a secondary monitor to display guidance information generated with CT or MRI images. Newer systems use augmented reality to project surgical plans into binocular glasses. These surgical procedures are often mentally challenging and cumbersome to perform.
Method
A comprehensive surgical navigation system for direct guidance while minimizing radiation exposure was designed and built. System accuracy was evaluated using in vitro needle insertion experiments. The fluoroscopic-based navigation technique is combined with an existing laser guidance technique. As a result, the combined system is capable of surgical planning using two or more X-ray images rather than CT or MRI scans. Guidance information is directly projected onto the patient using two laser beams and not via a secondary monitor.
Results
We performed 15 in vitro needle insertion experiments as well as 6 phantom pedicle screw insertion experiments to validate navigation system accuracy. The planning accuracy of the system was found to be 2.32 mm and 2.28°, while its overall guidance accuracy was found to be 2.40 mm and 2.39°. System feasibility was demonstrated by successfully performing percutaneous pin insertion on phantoms.
Conclusion
Quantitative and qualitative evaluations of the fluorolaser navigation system show that it can support accurate guidance and intuitive surgical tool insertion procedures without preoperative 3D image volumes and registration processes.
Access this article
Rent this article via DeepDyve
Similar content being viewed by others
References
Schlenzka D, Laine T, Lund T (2000) Computer-assisted spine surgery. Eur Spine J 9(7): 57–64. doi:10.1007/PL00010023
Fuchs H, State A, Pisano E, Garrett W, Hirota G, Livingston M, Whitton M, Pizer S (1996) Towards performing ultrasound-guided needle biopsies from within a head-mounted display visualization in biomedical computing. In: Höhne K, Kikinis R (eds), vol 1131. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 591–600. doi:10.1007/BFb0047002
Blackwell M, Nikou C, DiGioia AM, Kanade T (2000) An image overlay system for medical data visualization. Med Image Anal 4(1): 67–72. doi:10.1016/s1361-8415(00)00007-4
Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer GS, Mathieu H, Taylor RH, Zinreich SJ, Fayad LM (2005) Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng 52(8): 1415–1424
Liao H, Ishihara H, Tran H, Masamune K, Sakuma I, Dohi T (2008) Fusion of laser guidance and 3-D autostereoscopic image overlay for precision-guided surgery medical imaging and augmented reality. In: Dohi T, Sakuma I, Liao H (eds), vol 5128. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 367–376. doi:10.1007/978-3-540-79982-5_40
Volonté F, Pugin F, Bucher P, Sugimoto M, Ratib O, Morel P (2011) Augmented reality and image overlay navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepato-Biliary-Pancreatic Sci 18(4): 506–509. doi:10.1007/s00534-011-0385-6
Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, Weber S (2011) Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-011-0660-7
Malik JM, Kamiryo T, Goble J, Kassell NF (1995) Stereotactic laser-guided approach to distal middle cerebral artery aneurysms. Acta Neurochirurgica 132(1): 138–144. doi:10.1007/bf01404862
Lavallee S, Toroccaz J, Sautot P et al (1996) Computer-assisted spinal surgery using anatomy-based registration. In: Computer-Integrated Surgery: Technology and Clinical Applications, the MIT Press, pp 425–229
Hussman KL, Chalouplca JC, Berger SB (1998) Frameless laser-guided stereotaxis: a system for CT-monitored neurosurgical interventions. Stereotect Funct Neurosurg 71: 62–75. doi:10.1159/000029649
Glossop N, Wedlake C, Moore J, Peters T, Wang Z (2003) Laser projection augmented reality system for computer assisted surgery medical image computing and computer-assisted intervention—MICCAI 2003. In: Ellis R, Peters T (eds), vol 2879. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 239–246. doi:10.1007/978-3-540-39903-2_30
Marmurek J, Wedlake C, Pardasani U et al (2005) Image-guided laser projection for port placement in minimally invasive surgery. In: Medicine meets virtual reality 14, vol 119. IOS Press, pp 367–372
Nitta N, Takahashi M, Tanaka T, Takazakura R, Sakashita Y, Furukawa A, Murata K, Shimoyama K (2007) Laser-guided computed tomography puncture system: simulation experiments using artificial phantom lesions and preliminary clinical experience. Radiat Med 25(4): 187–193. doi:10.1007/s11604-006-0116-0
Sasama T, Sugano N, Sato Y, Momoi Y, Koyama T, Nakajima Y, Sakuma I, Fujie M, Yonenobu K, Ochi T, Tamura S (2002) A novel laser guidance system for alignment of linear surgical tools: its principles and performance evaluation as a man—machine system medical image computing and computer-assisted intervention—MICCAI 2002. In: Dohi T, Kikinis R (eds) vol 2489. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 125–132. doi:10.1007/3-540-45787-9_16
Nakajima Y, Sasama T, Momoi Y, Sugano N, Tamura Y, Dohi T, Lim S, Sakuma I, Mitsuishi M, Koyama T, Yonenobu K, Ohnishi I, Bessho M, Ohashi S, Nakamura K (2012) Surgical tool alignment guidance by drawing two cross-sectional laser-beam planes. IEEE Trans Biomed Eng (in-press)
Foley KT, Simon DA, Rampersaud YR (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26(4): 347–351
Hofstetter R, Slomczykowski M, Sati M, Nolte L-P (1999) Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comput Aided Surg 4(2): 65–76. doi:10.3109/10929089909148161
Wiest P, Locken J, Heintz P, Mettler F (2002) CT scanning: a major source of radiation exposure. Semin Ultsd CT MRI 23(5): 402–410. doi:10.1053/sult.2002.34010
Smith H, Welsch M, Sasso R, Vaccaro A (2008) Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med 31(5): 532–537
Nakajima Y, Yamamoto H, Sato Y, Sugano N, Momoi Y, Sasama T, Koyama T, Tamura Y, Yonenobu K, Sakuma I, Yoshikawa H, Ochi T, Tamura S (2004) Available range analysis of laser guidance system and its application to monolithic integration with optical tracker. Int Congr Ser 1268(0): 449–454. doi:10.1016/j.ics.2004.03.127
Lim S, Douke T, Onogi S et al (2010) Assessment for the feasibility of external-fixation pin guidance using laser navigation. Jpn Soc Comp Aid Surg 12: 511–518
Livyatan H, Yaniv Z, Joskowicz L (2002) Robust automatic C-arm calibration for fluoroscopy-based navigation: a practical approach medical image computing and computer-assisted intervention—MICCAI 2002. In: Dohi T, Kikinis R (eds) vol 2489. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 60–68. doi:10.1007/3-540-45787-9_8
Cho PS, Johnson RH (1998) Automated detection of bb pixel clusters in digital fluoroscopy images. Phys Med Biol 42: 2677–2682
Yakimovsky Y, Cunningham R (1978) A system for extracting three-dimensional measurements from a stereo pair of TV cameras. Comput Graph Image Process 7(2): 195–210. doi:10.1016/0146-664x(78)90112-0
Tate P, Lachine V, Fu L, Croitoru H, Sati M (2001) Performance and robustness of automatic fluoroscopic image calibration in a new computer assisted surgery system medical image computing and computer-assisted intervention—MICCAI 2001. In: Niessen W, Viergever M (eds) vol 2208. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 1130–1136. doi:10.1007/3-540-45468-3_135
Ferreira S, Bruns R, Ferreira H, Matos G, David J, Brandao G, Silva E, Portugal L, Reis P, Souza A, Santos W (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta 597(2): 179–186. doi:10.1016/j.aca.2007.07.011
Gertzbein S, Robbins S (1990) Accuracy of pedicular screw placement in vivo. Spine 15(1): 11–14
Pechlivanis I, Kiriyanthan G, Engelhardt M, Scholz M, Lucke S, Harders A, Schmieder K (2009) Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system. Spine 34(4): 392–398
Belmont P, Klemme W, Dhawan A, Polly D (2001) In vivo accuracy of thoracic pedicle screws. Spine 26(21): 2340–2346
Weil Y, Liebergall M, Mosheiff R, Helfet D, Pearle A (2007) Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comp Aided Surg 12(5): 295–302
Navab N, Bascle B, Loser M, Geiger B, Taylor R (2000) Visual servoing for automatic and uncalibrated needle placement for percutaneous procedures. In: Proceedings of the IEEE Conference on Computer vision and pattern recognition, 2000, vol.322. pp 327–334
Croitoru H, Ellis RE, Prihar R, Small CF, Pichora DR (2001) Fixation-based surgery: a new technique for distal radius osteotomy. Comput Aided Surg 6(3): 160–169. doi:10.1002/igs.1019
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, J.T., Doke, T., Onogi, S. et al. A fluorolaser navigation system to guide linear surgical tool insertion. Int J CARS 7, 931–939 (2012). https://doi.org/10.1007/s11548-012-0743-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-012-0743-0