Skip to main content

Advertisement

Log in

A method for segmentation of dental implants and crestal bone

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose   Medical imaging and in particular digital radiographic images offer a great deal of information to dentists in the clinical diagnosis and treatment processes on a daily basis. This paper presents a new method aimed to produce an accurate segmentation of dental implants and the crestal bone line in radiographic images. With this, it is possible computing several measures to biomechanical and clinical evaluation of dental implants positioning and evolution. Methods   The proposed segmentation method includes two major steps: (1) the preprocessing that combine denoising filters, morphological operations and histogram threshold techniques and (2) the final segmentation involving made-to-measure adjusted and trained active shape models for detecting the precise location of the intended structures. Results   Resulting measurements were compared to manual measurements made by experts on representative radiographs from patients. The calculated intraclass correlation coefficient was 0.75 and showed good reliability of the method, and the Bland-Altman analysis showed 95 % of the values within the limits of agreement. The mean of the differences between the manual and method-driven measurements was 0.049 mm (\(-0.137; -0.040\)) 95 % CI, inferior to the established limit (0.15mm). Conclusions   It was demonstrated that the method achieved a precise segmentation of the intended structures. The validation process on standardized periapical radiographs showed good agreement between the manual measurements and the ones produced by the new method. Future work will be focused on making the method more robust to densitometry changes and to validate the method on non-standardized radiographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL (2001) Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. Int J Oral Maxillofac Implants 16(4):475–485

    PubMed  CAS  Google Scholar 

  2. Kamburoglu K, Gulsahi A, Genc Y, Paksoy CS (2012) A comparison of peripheral marginal bone loss at dental implants measured with conventional intraoral film and digitized radiographs. J Oral Implantol 38(3):211–219. doi:10.1563/AAID-JOI-D-09-00147

    Article  PubMed  Google Scholar 

  3. Birkfellner W, Huber K, Larson A, Hanson D, Diemling M, Homolka P, Bergmann H (2000) A modular software system for computer-aided surgery and its first application in oral implantology. IEEE Trans Med Imaging 19(6):616–620

    Google Scholar 

  4. Galanis CC, Sfantsikopoulos MM, Koidis PT, Kafantaris NM, Mpikos PG (2007) Computer methods for automating preoperative dental implant planning: implant positioning and size assignment. Comput Methods Programs Biomed 86(1):30–38

    Article  PubMed  Google Scholar 

  5. Nickenig HJ, Wichmann M, Hamel J, Schlegel KA, Eitner S (2010) Evaluation of the difference in accuracy between implant placement by virtual planning data and surgical guide templates versus the conventional free-hand method-a combined in vivo-in vitro technique using cone-beam CT (Part II). J Cranio-Maxillofac Surg 38(7):488–493

    Google Scholar 

  6. Nickenig HJ, Eitner S (2010) An alternative method to match planned and achieved positions of implants, after virtual planning using cone-beam CT data and surgical guide templates–a method reducing patient radiation exposure (part I). J Cranio-Maxillofac Surg 38(6):436–440

    Article  Google Scholar 

  7. Chen X, Wang C, Lin Y (2005) A computer-aided oral implantology system. In: Engineering in Medicine and Biology Society, IEEE-EMBS, 2005. 27th Annual International Conference of the 17–18 Jan 2005, pp 3312–3315. doi:10.1109/iembs.2005.16117185

  8. Youssif AAA, Chowdhury MU, Ray S (2005) Computer aided analysis of dental radiographic images. In: Digital Image Computing: Techniques and Applications, DICTA ‘05, Proceedings 2005. doi:10.1109/dicta.2005.23

  9. El-Bialy A (2008) Towards a complete computer dental treatment system. In: Cairo international biomedical engineering conference, CIBEC 2008, pp 1–8

  10. Pratt WK (2001) Digital Image Processing: PIKS Scientific Inside, 3rd edn. John Wiley & Sons, New York

  11. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall Press, Englewood Cliffs, ISBN 0-201-18075-8

  12. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698

    Article  Google Scholar 

  13. Davis LS (1975) A survey of edge detection techniques. Comput Graphics Image Process 4(3):248–270

    Article  Google Scholar 

  14. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Google Scholar 

  15. Glasbey CA (1993) An analysis of histogram-based thresholding algorithms. CVGIP Graph Models Image Process 55(6):532–537

    Article  Google Scholar 

  16. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  17. Pan Z, Lu J (2007) A Bayes-based region-growing algorithm for medical image segmentation. Comput Sci Eng 9(4):32–38

    Article  Google Scholar 

  18. Yi J, Ra JB (2001) Vascular segmentation algorithm using locally adaptive region growing based on centerline estimation. Proceedings of SPIE, vol 4322

  19. Terzopoulos D, Fleischer KW (1988) Deformable models. Visual Comput 4(6):306–331

    Article  Google Scholar 

  20. Terzopoulos D, Witkin A, Kass M (1988) Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif Intell 36(1):91–123

    Article  Google Scholar 

  21. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  22. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  PubMed  CAS  Google Scholar 

  23. Xu C, Prince JL (1997) Gradient vector flow: a new external force for snakes. cvpr

  24. Cootes TF, Taylor CJ, Cooper DH, Graham J et al (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  25. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intell 23(6):681–685

    Google Scholar 

  26. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Medical Image Anal 1(2):91–108

    Article  CAS  Google Scholar 

  27. Beichel R, Bischof H, Leberl F, Sonka M (2005) Robust active appearance models and their application to medical image analysis. IEEE Trans Med Imaging 24(9):1151–1169

    Article  PubMed  Google Scholar 

  28. Guevara M, Silva A, Oliveira H, de Lourdes Pereira M, Morgado F (2003) Segmentation and morphometry of histological sections using deformable models: a new tool for evaluating testicular histopathology. Progress Pattern Recognit Speech Image Anal 2905:282–290

    Google Scholar 

  29. Pastorinho M, Guevara M, Silva A, Coelho L, Morgado F (2005) Development of a New Index to Evaluate Zooplanktons’ Gonads: an approach based on a suitable combination of deformable models. Progress Pattern Recognit Image Anal Appl 3773:498–505

    Google Scholar 

  30. Vasconcelos MJM, Tavares JMRS (2008) Methods to automatically build point distribution models for objects like hand palms and faces represented in images. Comp Model Eng Sci 36(3):213–242

    Google Scholar 

  31. Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV (2011) Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging 30(2):484

    Article  PubMed  Google Scholar 

  32. Van Ginneken B, Frangi AF, Staal JJ, Viergever MA (2002) Active shape model segmentation with optimal features. IEEE Trans Med Imaging 21(8):924–933

    Article  PubMed  Google Scholar 

  33. Couture RA, Dixon DA, Hildebolt CF (2005) A precise receptor-positioning device for subtraction radiography, based on cross-arch stabilization. Dentomaxillofac Radiol 34(4):231–236. doi:10.1259/dmfr/22285074

    Article  PubMed  CAS  Google Scholar 

  34. Sewerin IP (1990) Errors in radiographic assessment of marginal bone height around osseointegrated implants. Scand J Dent Res 98(5):428–433

    PubMed  CAS  Google Scholar 

  35. Schulze RK, d’Hoedt B (2001) Mathematical analysis of projection errors in “paralleling technique” with respect to implant geometry. Clin Oral Implants Res 12(4):364–371

    Google Scholar 

  36. Schulze R, Bruellmann DD, Roeder F, d’Hoedt B (2004) Determination of projection geometry from quantitative assessment of the distortion of spherical references in single-view projection radiography. Med Phys 31(10):2849–2854

    Google Scholar 

  37. Eickholz P, Kim TS, Benn DK, Staehle HJ (1998) Validity of radiographic measurement of interproximal bone loss. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85(1):99–106. doi:10.1016/s1079-2104(98)90406-1

    Google Scholar 

  38. Serra J (1982) Image analysis and mathematical morphology. Academic Press, London [Review by Fensen EB in J Microsc 131 (1983) 258] Review article General article, Technique Microscopy Staining, Mathematics, Cell size (PMBD, 185707888)

  39. Soille P (1999) Morphological image analysis: principles and applications. Springer, Berlin

    Book  Google Scholar 

  40. Kong TY, Rosenfeld A (1996) Topological algorithms for digital image processing, vol 19. North Holland, Amsterdam

    Book  Google Scholar 

  41. Kroon D-J (2010) Active shape model (ASM) and active appearance model (AAM): Cootes 2D/3D active shape & appearance model for automatic image object segmentation and recognition

  42. Bland JM, Altman DG (1990) A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput Biol Med 20(5):337–340

    Article  PubMed  CAS  Google Scholar 

  43. Bland JM, Altman DG (2003) Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol 22(1):85–93. doi:10.1002/uog.122

    Article  PubMed  CAS  Google Scholar 

  44. Cochran DL, Nummikoski PV, Schoolfield JD, Jones AA, Oates TW (2009) A prospective multicenter 5-year radiographic evaluation of crestal bone levels over time in 596 dental implants placed in 192 patients. J Periodontol 80(5):725–733. doi:10.1902/jop.2009.080401

    Article  PubMed  Google Scholar 

  45. Ruttimann UE, Webber RL, Schmidt E (1986) A robust digital method for film contrast correction in subtraction radiography. J Periodontal Res 21(5):486–495. doi:10.1111/1600-0765.ep13633399

    Google Scholar 

  46. Schulze RK (2010) Pose determination of a cylindrical (dental) implant in three-dimensions from a single two-dimensional radiograph. Dentomaxillofac Radiol 39(1):33–41. doi:10.1259/dmfr/12523158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is co-financed by the Foundation for Science and Technology via project PTDC/SAU-BEB/108658/2008 and by FEDER via the “Programa Operacional Factores de Competitividade” of QREN with COMPETE reference: FCOMP-01-0124-FEDER-010961. Project designated “Avaliação Clínica e Biomecânica de Implantes Dentários Sujeitos a Platform Switching” of University of Coimbra (Portugal). The authors also acknowledge INEGI and Faculty of Medicine, Area of Dentistry of University of Coimbra. Prof. Guevara acknowledges POPH - QREN-Tipologia 4.2—Promotion of scientific employment funded by the ESF and MCTES, Portugal.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, P., Guevara, M.A., Messias, A. et al. A method for segmentation of dental implants and crestal bone. Int J CARS 8, 711–721 (2013). https://doi.org/10.1007/s11548-012-0802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-012-0802-6

Keywords

Navigation