Skip to main content

Advertisement

Log in

Catheter tip tracking for MR-guided interventions using discrete Kalman filter and mean shift localization

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

This paper presents and evaluates stochastic computer algorithms used to automatically detect and track marked catheter tip during MR-guided catheterization. The algorithms developed employ extraction and matching of regional features of the catheter tip to perform the localization.

Method

To perform the tracking, a probability map that indicates the possible locations of the catheter tip in the MR images is first generated. This map is generated from the similarity to a given marker template. The method to assess the similarity between the marker template image and the different positions on each MR frame is based on speeded-up robust features extracted from the gradient image. The probability map is then used in two different stochastic localization frameworks mean shift (MS) localization and Kalman filter (KF) to track the position of the catheter using pairs of orthogonal projection of 2D MR images. The algorithm developed was tested on catheter tip marked with LC resonant circuit (of size \(2\,\hbox {mm}\,\times \,2\,\hbox {cm}\)) tuned to the Larmor frequency of the MRI scanner and for different image resolutions (1, 3, 5 and 7 mm squared pixel).

Results

The tracking performance was very robust for the two algorithms MS and KF with image resolution as low as 3 mm where the localization error was about 1 mm for KF and 0.9 mm for MS. For the 5-mm resolution images, the error was 2.2 mm for both KF and MS, and for the 7-mm resolution images, the error was 3.6 and 3.7 mm for KF and MS, respectively.

Conclusion

Both KF and MS gave comparable results when it comes to accuracy for the different image resolutions. The results showed that the two tracking algorithms tracked the catheter tip with high robustness for image resolution of 3 mm and with acceptable reliability for image resolution as poor as 5 mm with the resonant marker configuration used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Horvath KA, Li M, Mazilu D, Guttman MA, McVeigh ER (2007) Real-time magnetic resonance imaging guidance for cardiovascular procedures. Semin Thorac Cardiovasc Surg 19(4):330–335

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ratnayaka K, Lederman RJ (2010) Interventional cardiovascular MR—the next stage in pediatric cardiology. Prog Pediatr Cardiol 28(1–2):59–67. doi:10.1016/j.ppedcard.2009.10.008

    Article  Google Scholar 

  3. Saikus CE, Lederman RJ (2009) Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging 2(11):1321–1331. doi:10.1016/j.jcmg.2009.09.002

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29(3):411–415. doi:10.1002/mrm.1910290322

    Article  CAS  PubMed  Google Scholar 

  5. Ladd ME, Zimmermann GG, McKinnon GC, von Schulthess GK, Dumoulin CL, Darrow RD, Hofmann E, Debatin JF (1998) Visualization of vascular guidewires using MR tracking. J Magn Reson Imaging 8(1):251–253

    Article  CAS  PubMed  Google Scholar 

  6. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13(1):105–114

    Article  CAS  PubMed  Google Scholar 

  7. Dempsey MF, Condon B, Hadley DM (2001) Investigation of the factors responsible for burns during MRI. J Magn Reson Imaging 13(4):627–631. doi:10.1002/jmri.1088

    Article  CAS  PubMed  Google Scholar 

  8. Rubin DL, Ratner AV, Young SW (1990) Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol 25(12):1325–1332

    Article  CAS  PubMed  Google Scholar 

  9. Omary RA, Unal O, Koscielski DS, Frayne R, Korosec FR, Mistretta CA, Strother CM, Grist TM (2000) Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol 11(8):1079–1085

    Article  CAS  PubMed  Google Scholar 

  10. Quick HH, Zenge MO, Kuehl H, Kaiser G, Aker S, Massing S, Bosk S, Ladd ME (2005) Interventional magnetic resonance angiography with no strings attached: wireless active catheter visualization. Magn Reson Med 53(2):446–455. doi:10.1002/mrm.20347

    Article  PubMed  Google Scholar 

  11. Umathum R, Krafft A, de Oliveira A, Bock M (2009) Inductively coupled coils for local SNR-enhancement during MR-guided prostate biopsy. In: 17th annual ISMRM scientific meeting and exhibition, 18–24 Apr 2009, p 4434

  12. Hegde S, Miquel ME, Boubertakh R, Gilderdale D, Muthurangu V, Keevil SF, Young I, Hill DL, Razavi RS (2006) Interactive MR imaging and tracking of catheters with multiple tuned fiducial markers. J Vasc Interv Radiol 17(7):1175–1179. doi:10.1097/01.rvi.0000228466.09982.8b

    Article  PubMed  Google Scholar 

  13. Rea M, Elhawary H, Tse Z, McRobbie D, Lamperth M, Young I (2008) 3D real-time tracking using passive fiducial markers and image processing. In: 16th annual ISMRM scientific meeting and exhibition, Toronto, Ontario, Canada, 3–9 May 2008, p 1215

  14. Rea M, McRobbie D, Elhawary H, Tse ZTH, Lamperth M, Young I (2009) Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI. Magn Reson Mater Phys Biol Med 22(2):71–76

    Article  Google Scholar 

  15. Busse H, Trampel R, Gründer W, Moche M, Kahn T (2007) Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures. J Magn Reson Imaging 26(4):1087–1096

    Article  PubMed  Google Scholar 

  16. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82(1):35–45

    Article  Google Scholar 

  17. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  18. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2000. IEEE, pp 142–149

  19. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. Comput Vis ECCV 2006:404–417

    Google Scholar 

  20. Bakker CJG, Seppenwoolde JH, Vincken KL (2005) Dephased mri. Magn Reson Med 55(1):92–97

    Article  Google Scholar 

  21. Murillo AC, Guerrero J, Sagues C (2007) Surf features for efficient robot localization with omnidirectional images. In: IEEE international conference on robotics and automation, 2007. IEEE, pp 3901–3907

  22. Reid I (2001) Estimation II: discrete-time Kalman filter (Lecture Note 2). Retrieved from http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf

  23. Maskell S, Gordon N (2001) A tutorial on particle filters for on-line nonlinear/non-Gaussian Bayesian tracking. In: Target tracking: algorithms and applications (Ref. No. 2001/174), IEE, 2001, vol 12. IET, pp 2/1–2/15

  24. Wan EA, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. In: Adaptive systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000. IEEE, pp 153–158

  25. Shan C, Wei Y, Tan T, Ojardias F (2004) Real time hand tracking by combining particle filtering and mean shift. In: Proceedings of the sixth IEEE international conference on automatic face and gesture recognition, 2004. IEEE, pp 669–674

  26. Valgren C, Lilienthal A (2007) SIFT, SURF and seasons: long-term outdoor localization using local features. In: Proceedings of the European conference on mobile robots (ECMR), pp 253–258

  27. Se S, Lowe D, Little J (2002) Global localization using distinctive visual features. In: IEEE/RSJ international conference on intelligent robots and systems, 2002. IEEE, pp 226–231

  28. Dorkó G, Schmid C (2003) Selection of scale-invariant parts for object class recognition. In: Proceedings of the ninth IEEE international conference on computer vision, 2003. IEEE, pp 634–639

  29. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  PubMed  Google Scholar 

  30. Juan L, Gwun O (2009) A comparison of sift, pca-sift and surf. Int J Image Process 3(4):143–152

    Google Scholar 

  31. Will K, Schimpf S, Brose A, Fischbach F, Ricke J, Schmidt B, Rose G (2010) Pre-tuned resonant marker for iMRI using aerosol deposition on polymer catheters. In: SPIE medical imaging. International Society for Optics and Photonics, p 76251Z

  32. Krug J, Will K, Rose G (2010) Simulation and experimental validation of resonant electric markers used for medical device tracking in magnetic resonance imaging. In: 2010 Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 1878–1881

  33. Konings MK, Bartels LW, Smits HFM, Bakker CJG (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12(1):79–85

    Article  CAS  PubMed  Google Scholar 

  34. Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA (2008) MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med 61(1):45–53

    Article  Google Scholar 

  35. Celik H, Ulutürk A, Talı T, Atalar E (2007) A catheter tracking method using reverse polarization for MR-guided interventions. Magn Reson Med 58(6):1224–1231

    Article  PubMed  Google Scholar 

  36. Seppenwoolde JH, Viergever MA, Bakker CJG (2003) Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 50(4):784–790

    Article  PubMed  Google Scholar 

  37. Bieri O, Patil S, Quick H, Scheffler K (2007) Morphing steady-state free precession. Magn Reson Med 58(6):1242–1248

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No 238802 (IIIOS project).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abubakr Eldirdiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldirdiri, A., Courivaud, F., Palomar, R. et al. Catheter tip tracking for MR-guided interventions using discrete Kalman filter and mean shift localization. Int J CARS 9, 313–322 (2014). https://doi.org/10.1007/s11548-013-0933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0933-4

Keywords

Navigation