Abstract
Purpose
A new approach to optimize stent graft selection for endovascular aortic repair is the use of finite element analysis. Once the finite element model is created and solved, a software module is needed to view the simulation results in the clinical work environment. A new tool for interpretation of simulation results, named Medical Postprocessor, that enables comparison of different stent graft configurations and products was designed, implemented and tested.
Methods
Aortic endovascular stent graft ring forces and sealing states in the vessel landing zone of three different configurations were provided in a surgical planning software using the Medical Imaging Interaction Tool Kit (MITK) software system. For data interpretation, software modules for 2D and 3D presentations were implemented. Ten surgeons evaluated the software features of the Medical Postprocessor. These surgeons performed usability tests and answered questionnaires based on their experience with the system.
Results
The Medical Postprocessor visualization system enabled vascular surgeons to determine the configuration with the highest overall fixation force in \(16 \pm 6\) s, best proximal sealing in \(56 \pm 24\) s and highest proximal fixation force in \(38\pm 12\) s. The majority considered the multiformat data provided helpful and found the Medical Postprocessor to be an efficient decision support system for stent graft selection. The evaluation of the user interface results in an ISONORM-conform user interface (113.5 points).
Conclusion
The Medical Postprocessor visualization software tool for analyzing stent graft properties was evaluated by vascular surgeons. The results show that the software can assist the interpretation of simulation results to optimize stent graft configuration and sizing.















Similar content being viewed by others
References
Volodos NL, Shekhanin VE, Karpovich IP, Troian VI, Gur’ev IA (1986) A self-fixing synthetic blood vessel endoprosthesis. Vestn Khir Im I I Grek 137:123–125
Parodi JC, Palmaz JC, Barone HD (1991) Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg 5:491–499
Dake MD, Miller DC, Semba CP (1994) Transluminal placement of endovascular stent-grafts for the treatment of descending thoracic aortic aneurysms. N Engl J Med 331(26):1729–1734
Stelter WJ, Umscheid T, Ziegler P (1997) Three-year experience with modular stent graft devices for endovascular AAA treatment. J Endovasc surg 4:362–369
Deutsche Gesellschaft für Gefäßchirurgie (DGG) (2008) 8. Qualitätsmanagement Bauchaortenaneurysma
VASCUTEK Ltd, a TERUMO Company, Anaconda stent graft, http://www.vascutek.com/vascutek/products/item/anaconda-aaa-stent-graft-system. Active link, July 2013
Kortmann H (2011) Bauchaortenaneurysmen (Kapitel 11). In: Kompaktwissen Gefäßchirurgie, B.L.P. Luther (Hrsg.). Springer, Heidelberg, pp 199–219
Rosset A (2012) OsiriX imaging software. http://www.osirix-viewer.com. Active link, July 2013
Aquarius iNtuition Enterprise (2012) TeraRecon. http://www.terarecon.com. Active link, July 2013
Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and valuation of its applicability. J Biomech 33:475–482
Vascops GmbH (Österreich), VASCPOS (Sweden). http://www.vascops.com/en/vascops-A4clinics.html. Active link July 2013
Molony DS, Broderick S, Callanan A, McGloughlin TM, Walsh MT (2011) Fluid-structure interaction in healthy, diseased and endovascularly treated abdominal aortic aneurysms. Stud Mech Anobiol Tissue Eng Biomater, vol 7, Springer, Berlin, pp. 163–179. doi:10.1007/8415_2011_85. ISBN:978-3-642-18094-1
Sun Z, Chaichana T, Sangworasil M, Tungjitkusolmun S (2008) Computational fluid analysis of blood flow characteristics in abdominal aortic aneurysms treated with suprarenal endovascular grafts. ICBME Proc 23:1728–1732
Figueroa CA, Taylor CA, Yeh V, Chiou AJ, Zarins CK (2009) Effect of curvature on displacement forces acting on aortic endografts: a 3-dimensional computational analysis. J Endovasc Ther 16:284–294
Scherer S, Treichel T, Ritter N, Triebel G, Drossel, WG, Burgert O (2011) Surgical stent planning—simulation parameter study for models based on DICOM standards. Int J CARS, 6, 3. Springer, Heidelberg, pp 319–327
de Bock S, de Beule M, de Santis G, Vermassen F, Segers P, Verhegghe B (2011) A simulation tool for virtual stent graft deployment in patient-specific abdominal aortic aneurysms. In: Proceedings of the ASME, summer engineering conference
von Sachsen S, Etz CD, Mohr FW, Senf B, Neugebauer R, Florek HJ (2011) A method for integrating finite element results in a surgical planning software for evaluating stent graft properties in endovascular surgery. In: IEEE proceedings 4th international conference on biomedical engineering and informatics, Shanghai (China), pp 1349–1354. ISBN:978-1-4244-9350-0
Gebert de Uhlenbrock (2009) A. Dissertation Technische Universität Hamburg-Harburg, Designanalyse von endovaskulären Aortenprothesen
Senf B, von Sachsen S, Neugebauer R, Drossel WG, Florek HJ, Mohr FW, Etz CD (2013) The effect of stent graft oversizing on radial forces considering Nitinol wire behavior and vessel characteristics. J Med Eng (accepted)
Sinha Roy A, Westt K, Rontala RS, Greenberg RK, Banerjee RK (2007) In vitro measurement and calculation of drag force on iliac limb stentgraft in a compliant arterial wall model. Mol Cell Biomech 4(4):211–226
Corbett TJ, Molony DS, Callanan A, Mc Gloughlin TM (2011) The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovscular graft. Med Eng Phys 33(1):106–111
Arko FR, Heikkinen M, Lee ES, Bass A, Alsac JM, Zarins CK (2004) Iliac fixation length and resistance to in-vivo stentgraft displacement. In: Proceedings of the 19. Annual meeting of the western vascular society, vol 41, number 4, pp 664–671. doi:10.1016/j.jvs.2004.12.050
Kleinstreuer C, Li Z, Basciano CA, Seelecke S, Farber MA (2008) Computational mechanics of Nitinol stent grafts. J Biomech 41:2370–2378
Gao F, Watanabem M, Matsuzawa T (2006) Stress analysis in a layered aortic arch model under pulsatile blood flow. BioMed Eng Online 5. doi:10.1186/1475-925X-5-25
Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng H 126:657–665. doi:10.1115/1.1800557
Materialise (2013) Mimics innovation suite. http://biomedical.materialise.com/mimics. Active link July 2013
Materialise (2013) 3-matic. http://biomedical.materialise.com/3-matic-0. Active link July 2013
ANSYS, Inc. (2009) ANSYS manual; Version 11
Kitware (2013) The visualization toolkit. http://www.vtk.org. Active link July 2013
German Cancer Research Center Division of Medical and Biological Informatics Heidelberg (2012) Medical interaction and imaging tool kit (MITK). http://www.mitk.org/wiki/BlueBerry. Active link July 2013
Murphy EH, Johnson D, Arko FR (2007) Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J Endovasc Ther 14:585–592
Bosman WMPF, Steenhoven vd, Steenhoven TJ, Suárez DR, Hinnen JW, Valstar ER, Hamming JF (2010) The proximal fixation strength of modern EVAR grafts in a short aneurysm neck. An in vitro study. Eur J Vasc Endovasc Surg 39:187–192. doi:10.1016/j.ejvs2009.10.019
ISONORM 9241-110 (2013) Ergonomics of human-system interaction—Part 110: dialogue principles. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38009. Active Link July 2013
Prümper J (1997) Der Benutzungsfragebogen ISONORM 9241/10: Ergebnisse zur Reliabilität und Validität. In Liskkowsky R, Velichkovsky BM, Wünsschmann W (Hrsg) Software-Ergonomie ’97-usability engineering: integration von Mensch-Computer-Interaktion und Software-Entwicklung, pp 253–262
Prümper J (2013) ISONORM 9241-110 questionnaire. http://www.seikumu.de/de/dok/dok-echtbetrieb/Fragebogen-ISONORM-9241-110-S.pdf. Active link July 2013
Prümper J (2013) ISONORM 9241-110 Questionnaire interpretation matrix. http://www.seikumu.de/de/dok/dok-echtbetrieb/Vorlage-Auswertung-ISONORM-Fragebogen.xls. Active link July 2013
Acknowledgments
This work was sponsored by funds of the European Regional Development Fund (ERDF) and the state of Saxony within the framework of measures supporting the technology sector.

Conflict of interest
Sandra von Sachsen, Björn Senf, Oliver Burgert, Jürgen Meixensberger, Hans-Joachim Florek, Friedrich Wilhelm Mohr and Christian Dirk Etz declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
von Sachsen, S., Senf, B., Burgert, O. et al. Stent graft visualization and planning tool for endovascular surgery using finite element analysis. Int J CARS 9, 617–633 (2014). https://doi.org/10.1007/s11548-013-0943-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-013-0943-2