Skip to main content

Advertisement

Log in

Stent graft visualization and planning tool for endovascular surgery using finite element analysis

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A new approach to optimize stent graft selection for endovascular aortic repair is the use of finite element analysis. Once the finite element model is created and solved, a software module is needed to view the simulation results in the clinical work environment. A new tool for interpretation of simulation results, named Medical Postprocessor, that enables comparison of different stent graft configurations and products was designed, implemented and tested.

Methods

 Aortic endovascular stent graft ring forces and sealing states in the vessel landing zone of three different configurations were provided in a surgical planning software using the Medical Imaging Interaction Tool Kit (MITK) software system. For data interpretation, software modules for 2D and 3D presentations were implemented. Ten surgeons evaluated the software features of the Medical Postprocessor. These surgeons performed usability tests and answered questionnaires based on their experience with the system.

Results

The Medical Postprocessor visualization system enabled vascular surgeons to determine the configuration with the highest overall fixation force in \(16 \pm 6\) s, best proximal sealing in \(56 \pm 24\) s and highest proximal fixation force in \(38\pm 12\) s. The majority considered the multiformat data provided helpful and found the Medical Postprocessor to be an efficient decision support system for stent graft selection. The evaluation of the user interface results in an ISONORM-conform user interface (113.5 points).

Conclusion

The Medical Postprocessor visualization software tool for analyzing stent graft properties was evaluated by vascular surgeons. The results show that the software can assist the interpretation of simulation results to optimize stent graft configuration and sizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Volodos NL, Shekhanin VE, Karpovich IP, Troian VI, Gur’ev IA (1986) A self-fixing synthetic blood vessel endoprosthesis. Vestn Khir Im I I Grek 137:123–125

    CAS  PubMed  Google Scholar 

  2. Parodi JC, Palmaz JC, Barone HD (1991) Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg 5:491–499

    Article  CAS  PubMed  Google Scholar 

  3. Dake MD, Miller DC, Semba CP (1994) Transluminal placement of endovascular stent-grafts for the treatment of descending thoracic aortic aneurysms. N Engl J Med 331(26):1729–1734

    Article  CAS  PubMed  Google Scholar 

  4. Stelter WJ, Umscheid T, Ziegler P (1997) Three-year experience with modular stent graft devices for endovascular AAA treatment. J Endovasc surg 4:362–369

    Article  CAS  PubMed  Google Scholar 

  5. Deutsche Gesellschaft für Gefäßchirurgie (DGG) (2008) 8. Qualitätsmanagement Bauchaortenaneurysma

  6. VASCUTEK Ltd, a TERUMO Company, Anaconda stent graft, http://www.vascutek.com/vascutek/products/item/anaconda-aaa-stent-graft-system. Active link, July 2013

  7. Kortmann H (2011) Bauchaortenaneurysmen (Kapitel 11). In: Kompaktwissen Gefäßchirurgie, B.L.P. Luther (Hrsg.). Springer, Heidelberg, pp 199–219

  8. Rosset A (2012) OsiriX imaging software. http://www.osirix-viewer.com. Active link, July 2013

  9. Aquarius iNtuition Enterprise (2012) TeraRecon. http://www.terarecon.com. Active link, July 2013

  10. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and valuation of its applicability. J Biomech 33:475–482

    Article  CAS  PubMed  Google Scholar 

  11. Vascops GmbH (Österreich), VASCPOS (Sweden). http://www.vascops.com/en/vascops-A4clinics.html. Active link July 2013

  12. Molony DS, Broderick S, Callanan A, McGloughlin TM, Walsh MT (2011) Fluid-structure interaction in healthy, diseased and endovascularly treated abdominal aortic aneurysms. Stud Mech Anobiol Tissue Eng Biomater, vol 7, Springer, Berlin, pp. 163–179. doi:10.1007/8415_2011_85. ISBN:978-3-642-18094-1

  13. Sun Z, Chaichana T, Sangworasil M, Tungjitkusolmun S (2008) Computational fluid analysis of blood flow characteristics in abdominal aortic aneurysms treated with suprarenal endovascular grafts. ICBME Proc 23:1728–1732

    Google Scholar 

  14. Figueroa CA, Taylor CA, Yeh V, Chiou AJ, Zarins CK (2009) Effect of curvature on displacement forces acting on aortic endografts: a 3-dimensional computational analysis. J Endovasc Ther 16:284–294

    Google Scholar 

  15. Scherer S, Treichel T, Ritter N, Triebel G, Drossel, WG, Burgert O (2011) Surgical stent planning—simulation parameter study for models based on DICOM standards. Int J CARS, 6, 3. Springer, Heidelberg, pp 319–327

    Google Scholar 

  16. de Bock S, de Beule M, de Santis G, Vermassen F, Segers P, Verhegghe B (2011) A simulation tool for virtual stent graft deployment in patient-specific abdominal aortic aneurysms. In: Proceedings of the ASME, summer engineering conference

  17. von Sachsen S, Etz CD, Mohr FW, Senf B, Neugebauer R, Florek HJ (2011) A method for integrating finite element results in a surgical planning software for evaluating stent graft properties in endovascular surgery. In: IEEE proceedings 4th international conference on biomedical engineering and informatics, Shanghai (China), pp 1349–1354. ISBN:978-1-4244-9350-0

  18. Gebert de Uhlenbrock (2009) A. Dissertation Technische Universität Hamburg-Harburg, Designanalyse von endovaskulären Aortenprothesen

  19. Senf B, von Sachsen S, Neugebauer R, Drossel WG, Florek HJ, Mohr FW, Etz CD (2013) The effect of stent graft oversizing on radial forces considering Nitinol wire behavior and vessel characteristics. J Med Eng (accepted)

  20. Sinha Roy A, Westt K, Rontala RS, Greenberg RK, Banerjee RK (2007) In vitro measurement and calculation of drag force on iliac limb stentgraft in a compliant arterial wall model. Mol Cell Biomech 4(4):211–226

    CAS  PubMed  Google Scholar 

  21. Corbett TJ, Molony DS, Callanan A, Mc Gloughlin TM (2011) The effect of vessel material properties and pulsatile wall motion on the fixation of a proximal stent of an endovscular graft. Med Eng Phys 33(1):106–111

    Article  CAS  PubMed  Google Scholar 

  22. Arko FR, Heikkinen M, Lee ES, Bass A, Alsac JM, Zarins CK (2004) Iliac fixation length and resistance to in-vivo stentgraft displacement. In: Proceedings of the 19. Annual meeting of the western vascular society, vol 41, number 4, pp 664–671. doi:10.1016/j.jvs.2004.12.050

  23. Kleinstreuer C, Li Z, Basciano CA, Seelecke S, Farber MA (2008) Computational mechanics of Nitinol stent grafts. J Biomech 41:2370–2378

    Google Scholar 

  24. Gao F, Watanabem M, Matsuzawa T (2006) Stress analysis in a layered aortic arch model under pulsatile blood flow. BioMed Eng Online 5. doi:10.1186/1475-925X-5-25

  25. Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng H 126:657–665. doi:10.1115/1.1800557

    Google Scholar 

  26. Materialise (2013) Mimics innovation suite. http://biomedical.materialise.com/mimics. Active link July 2013

  27. Materialise (2013) 3-matic. http://biomedical.materialise.com/3-matic-0. Active link July 2013

  28. ANSYS, Inc. (2009) ANSYS manual; Version 11

  29. Kitware (2013) The visualization toolkit. http://www.vtk.org. Active link July 2013

  30. German Cancer Research Center Division of Medical and Biological Informatics Heidelberg (2012) Medical interaction and imaging tool kit (MITK). http://www.mitk.org/wiki/BlueBerry. Active link July 2013

  31. Murphy EH, Johnson D, Arko FR (2007) Device-specific resistance to in vivo displacement of stent-grafts implanted with maximum iliac fixation. J Endovasc Ther 14:585–592

    Article  PubMed  Google Scholar 

  32. Bosman WMPF, Steenhoven vd, Steenhoven TJ, Suárez DR, Hinnen JW, Valstar ER, Hamming JF (2010) The proximal fixation strength of modern EVAR grafts in a short aneurysm neck. An in vitro study. Eur J Vasc Endovasc Surg 39:187–192. doi:10.1016/j.ejvs2009.10.019

  33. ISONORM 9241-110 (2013) Ergonomics of human-system interaction—Part 110: dialogue principles. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38009. Active Link July 2013

  34. Prümper J (1997) Der Benutzungsfragebogen ISONORM 9241/10: Ergebnisse zur Reliabilität und Validität. In Liskkowsky R, Velichkovsky BM, Wünsschmann W (Hrsg) Software-Ergonomie ’97-usability engineering: integration von Mensch-Computer-Interaktion und Software-Entwicklung, pp 253–262

  35. Prümper J (2013) ISONORM 9241-110 questionnaire. http://www.seikumu.de/de/dok/dok-echtbetrieb/Fragebogen-ISONORM-9241-110-S.pdf. Active link July 2013

  36. Prümper J (2013) ISONORM 9241-110 Questionnaire interpretation matrix. http://www.seikumu.de/de/dok/dok-echtbetrieb/Vorlage-Auswertung-ISONORM-Fragebogen.xls. Active link July 2013

Download references

Acknowledgments

This work was sponsored by funds of the European Regional Development Fund (ERDF) and the state of Saxony within the framework of measures supporting the technology sector.

figure a

Conflict of interest

Sandra von Sachsen, Björn Senf, Oliver Burgert, Jürgen Meixensberger, Hans-Joachim Florek, Friedrich Wilhelm Mohr and Christian Dirk Etz declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. von Sachsen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Sachsen, S., Senf, B., Burgert, O. et al. Stent graft visualization and planning tool for endovascular surgery using finite element analysis. Int J CARS 9, 617–633 (2014). https://doi.org/10.1007/s11548-013-0943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0943-2

Keywords

Navigation