Skip to main content
Log in

Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Four-dimensional CT imaging is widely used to account for motion-related effects during radiotherapy planning of lung cancer patients. However, 4D CT often contains motion artifacts, cannot be used to measure motion variability, and leads to higher dose exposure. In this article, we propose using 4D MRI to acquire motion information for the radiotherapy planning process. From the 4D MRI images, we derive a time-continuous model of the average patient-specific respiratory motion, which is then applied to simulate 4D CT data based on a static 3D CT.

Methods

The idea of the motion model is to represent the average lung motion over a respiratory cycle by cyclic B-spline curves. The model generation consists of motion field estimation in the 4D MRI data by nonlinear registration, assigning respiratory phases to the motion fields, and applying a B-spline approximation on a voxel-by-voxel basis to describe the average voxel motion over a breathing cycle. To simulate a patient-specific 4D CT based on a static CT of the patient, a multi-modal registration strategy is introduced to transfer the motion model from MRI to the static CT coordinates.

Results

Differences between model-based estimated and measured motion vectors are on average 1.39 mm for amplitude-based binning of the 4D MRI data of three patients. In addition, the MRI-to-CT registration strategy is shown to be suitable for the model transformation.

Conclusions

The application of our 4D MRI-based motion model for simulating 4D CT images provides advantages over standard 4D CT (less motion artifacts, radiation-free). This makes it interesting for radiotherapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  2. Biederer J, Hintze C, Fabel M, Dinkel J (2009) Untersuchung der atemabhängigen Bewegungen pulmonaler Raumforderungen mit der MRT. Der Radiologe 49(8):705–711

    Google Scholar 

  3. Blackall JM, Ahmad S, Miquel ME, McClelland JR, Landau DB, Hawkes DJ (2006) MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning. Phys Med Biol 51(17):4147–4169

    Article  CAS  PubMed  Google Scholar 

  4. Boye D, Lomax T, Knopf A (2013) Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: a technical feasibility study. Med Phys 40(6):061702

    Article  PubMed  Google Scholar 

  5. Boye D, Samei G, Schmidt J, Székely G, Tanner C (2013) Population based modeling of respiratory lung motion and prediction from partial information. In: Ourselin S, Haynor DR (eds) Proceedings of SPIE, vol 8669, p 86690U

  6. Dinkel J, Tetzlaff R, Hintze C, Thieke C, Rochet N, Delorme S, Biederer J (2009) 4D lung imaging with time-resolved 3D MRI: comparison of different sequence parameters for the assessment of tumor size and image quality in a ventilated ex-vivo setup. Int J Radiat Oncol Biol Phys 75(3):S145–S146

    Article  Google Scholar 

  7. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18(8):1016–1022

    Article  Google Scholar 

  8. Ehrhardt J, Werner R, Schmidt-Richberg A, Handels H (2011) Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans Med Imaging 30(2):251–265

    Article  PubMed  Google Scholar 

  9. Guimond A, Roche A, Ayache N, Meunier J (2001) Three-dimensional multimodal brain warping using the demons algorithm and adaptive intensity corrections. IEEE Trans Med Imaging 20(1):58–69

    Article  CAS  PubMed  Google Scholar 

  10. Hugo GD, Rosu M (2012) Advances in 4D radiation therapy for managing respiration: part I—4D imaging. Z Med Phys 22(4):258–271

    Article  PubMed  Google Scholar 

  11. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T (2012) Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal 16(1):252–264

    Article  CAS  PubMed  Google Scholar 

  12. Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, Miller RW, Song Y (2008) Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat 7(1):67–81

    CAS  PubMed  Google Scholar 

  13. Low D (2013) Acquiring 4D thoracic CT scans using ciné CT acquisition. In: Ehrhardt J, Lorenz C (eds) 4D Modeling and estimation of respiratory motion for radiation therapy, biological and medical physics, biomedical engineering. Springer, Berlin, pp 43–58

    Chapter  Google Scholar 

  14. Low DA, Parikh PJ, Lu W, Dempsey JF, Wahab SH, Hubenschmidt JP, Nystrom MM, Handoko M, Bradley JD (2005) Novel breathing motion model for radiotherapy. Int J Radiat Oncol Biol Phys 63(3):921–929

    Article  PubMed  Google Scholar 

  15. Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA (2006) A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys 33(8):2964–2974

    Article  PubMed  Google Scholar 

  16. McClelland J, Blackall J, Tarte S, Chandler A, Hughes S, Ahmad S, Landau D, Hawkes D (2006) A continuous 4D motion model from multiple respiratory cycles for use in lung radiotherapy. Med Phys 33(9):3348–3358

    Article  PubMed  Google Scholar 

  17. Rao A, Chandrashekara R, Sanchez-Ortiz GI, Mohiaddin R, Aljabar P, Hajnal JV, Puri BK, Rueckert D (2004) Spatial transformation of motion and deformation fields using nonrigid registration. IEEE Trans Med Imaging 23(9):1065–1076

    Article  CAS  PubMed  Google Scholar 

  18. Rosu M, Hugo GD (2012) Advances in 4D radiation therapy for managing respiration: part II—4D treatment planning. Z Med Phys 22(4):272–280

    Article  PubMed  Google Scholar 

  19. Segars WP, Lalush DS, Tsui BMW (2001) Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. IEEE Trans Nucl Sci 48(1):89–97

    Article  Google Scholar 

  20. Shimizu S, Shirato H, Kagei K, Nishioka T, Bo X, Dosaka-Akita H, Hashimoto S, Aoyama H, Tsuchiya K, Miyasaka K (2000) Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 46(5):1127–1133

    Article  CAS  PubMed  Google Scholar 

  21. von Siebenthal M, Szèkely G, Lomax A, Cattin P (2007) Inter-subject modelling of liver deformation during radiation therapy. Med Image Comput Comput Assist Interv 10(Pt 1):659–666

    Google Scholar 

  22. Simpson DR, Lawson JD, Nath SK, Rose BS, Mundt AJ, Mell LK (2009) Utilization of advanced imaging technologies for target delineation in radiation oncology. J Am Coll Radiol 6(12):876–883

    Article  PubMed  Google Scholar 

  23. von Siebenthal M, Szèkely G, Gamper U, Boesiger P, Lomax A, Cattin P (2007) 4D MR imaging of respiratory organ motion and its variability. Phys Med Biol 52(6):1547–1564

    Article  Google Scholar 

  24. Werner R, Ehrhardt J, Schmidt-Richberg A, Albers D, Frenzel T, Petersen C, Cremers F, Handels H (2012) Towards accurate dose accumulation for step- &-shoot IMRT: impact of weighting schemes and temporal image resolution on the estimation of dosimetric motion effects. Z Med Phys 22:109–122

    Google Scholar 

  25. Werner R, Ehrhardt J, Schmidt-Richberg A, Handels H (2012) Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors. In: Holmes D, Wong K (eds) Proceedings of SPIE, vol 8316, p 83, 160C1–83,160C8

  26. West J (2011) Respiratory physiology: the essentials, 9th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  27. Wilms M, Ehrhardt J, Handels H (2012) A 4D statistical shape model for automated segmentation of lungs with large tumors. In: Proceedings of MICCAI, pp 347–354

  28. Wink N, Panknin C, Solberg TD (2006) Phase versus amplitude sorting of 4D-CT data. J Appl Clin Med Phys 7(1):77–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by Deutsche Forschungsgemeinschaft (HA 2355/9-2).

Conflict of interest

Mirko Marx, Jan Ehrhardt, René Werner, Heinz-Peter Schlemmer, and Heinz Handels declare that they have no conflict of interest. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Ehrhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marx, M., Ehrhardt, J., Werner, R. et al. Simulation of spatiotemporal CT data sets using a 4D MRI-based lung motion model. Int J CARS 9, 401–409 (2014). https://doi.org/10.1007/s11548-013-0963-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0963-y

Keywords

Navigation