Skip to main content
Log in

Task and crisis analysis during surgical training

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

   To design a surgical training environment based on task and crisis analysis of the surgical workflow.

Method

   The environment consists of: (1) real surgical instruments that are augmented with realistic haptic feedback and VR capabilities, (2) human sensory channels such as tactile, auditory and visual in real time, and (3) the ability to facilitate deliberate exposure to adverse events enabling mediation of error recovery strategies.

Validation

   Five surgeons were immersed in our medical simulation environment through task and crisis scenarios of a typical vertebroplasty workflow.

Results

   Based on a five-point Likert-scale survey, the face validity of our simulation environment was confirmed by investigating surgeon behavior and workflow response.

Conclusions

   The result of the conducted user-study corroborates our unique medical simulation concept of combining VR and human multisensory responses into surgical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rodriguez-Paz JM, Kennedy M, Salas E, Wu AW, Sexton JB, Hunt EA, Pronovost PJ (2009) Beyond see one, do one, teach one: toward a different training paradigm. Quality Saf Health Care 18(1):63–68

    CAS  Google Scholar 

  2. Kneebone R (2010) Simulation, safety and surgery. Quality Saf Health Care 19(3):i47–i52

    Article  Google Scholar 

  3. Lateef F (2010) Simulation-based learning: just like the real thing. J Emerg Trauma Shock 3(4):348–352

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gallagher AG, O’Sullivan GC (2012) Fundamentals of surgical simulation principles and practices. Springer, London

    Book  Google Scholar 

  5. Grantcharov TP, Kristiansen VB, Bendix J, Bardram L, Rosenberg J, Funch-Jensen P (2004) Randomized clinical trial of virtual reality simulation for laparoscopic skills training. British J Surg 91(2):146–150

    Article  CAS  Google Scholar 

  6. Safar P, Brown TC, Holtey WJ, Wilder RJ (1961) Ventilation and circulation with closed-chest cardiac massage in man. JAMA 176(7):574–576

    Article  PubMed  CAS  Google Scholar 

  7. Gordon MS (1974) Cardiology patient simulator: development of an animated manikin to teach cardiovascular disease. Am J Cardiol 34(3):350–355

    Article  PubMed  CAS  Google Scholar 

  8. Gaba DM, DeAnda A (1988) A comprehensive anesthesia simulation environment: re-creating the operating room for research and training. Anesthesiology 69(3):387–394

    Article  PubMed  CAS  Google Scholar 

  9. Fritz PZ, Gray T, Flanagan B (2008) Review of mannequin-based high-fidelity simulation in emergency medicine. Emerg Med Australas 20(1):1–9

    Article  PubMed  Google Scholar 

  10. Rosen KR (2008) The history of medical simulation. J Critical Care 23(2):157–166

    Article  Google Scholar 

  11. Devitt JH, Kurrek MM, Cohen MM, Fish K, Fish P, Noel AG, Szalai JP (1998) Testing internal consistency and construct validity during evaluation of performance in a patient simulator. Anesth Analg 86(6):1160–1164

    PubMed  CAS  Google Scholar 

  12. Devitt JH, Kurrek MM, Cohen MM, Cleave-Hogg D (2001) The validity of performance assessments using simulation. Anesthesiology 95(1):36–42

    Article  PubMed  CAS  Google Scholar 

  13. Cooper JB, Taqueti VR (2008) A brief history of the development of mannequin simulators for clinical education and training. Postgrad Med J 84(997):563–570

    Article  PubMed  CAS  Google Scholar 

  14. Heng P-A, Cheng C-Y, Wong T-T, Yangsheng X, Chui Y-P, Chan K-M, Tso SK (2004) Virtual reality based system for training on knee arthroscopic surgery. Stud Health Technol Inform 98:130– 136

    PubMed  Google Scholar 

  15. Chui C-K, Ong JSK, Lian Z-Y, Wang Z, Teo J, Zhang J, Yan C-H, Ong S-H, Wang S-C, Wong H-K, Teo C-L, Teoh S-H (2006) Haptics in computer-mediated simulation: training in vertebroplasty surgery. Simul Gaming 37(4):438–451

    Article  Google Scholar 

  16. Fargen KM, Siddiqui AH, Veznedaroglu E, Turner RD, Ringer AJ, Mocco J (2011) Simulator based angiography education in neurosurgery: results of a pilot educational program. J NeuroIntervent Surg 4(6):438–441

    Article  Google Scholar 

  17. Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM (2002) Virtual reality training improves operating room performance. Ann Surg 236(4):458–464

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA III, Ramel S, Smith CD, Arvidsson D (2007) Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 193(6):797–804

    Article  PubMed  Google Scholar 

  19. Cumin D, Boyd MJ, Webster CS, Weller JM (2013) A systematic review of simulation for multidisciplinary team training in operating rooms. Simul Healthc 8(3):171–179

    Article  PubMed  Google Scholar 

  20. Schout B, Hendrikx A, Scheele F, Bemelmans B, Scherpbier A (2010) Validation and implementation of surgical simulators: a critical review of present, past, and future. Surg Endosc 24(3):536–546

    Google Scholar 

  21. Rodgers DL (2007) High-fidelity patient simulation: a descriptive white paper report

  22. Wucherer P, Stefan P, Weidert S, Fallavollita P, Navab N (2013) Development and procedural evaluation of immersive medical simulation environments. In: Information processing in computer-assisted interventions, pp 1–10

  23. Krueger A, Bliemel C, Zettl R, Ruchholtz S (2009) Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: a systematic review of the literature. Eur Spine J 18(9):1257–1265

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ploeg WT, Veldhuizen AG, The B, Sietsma MS (2006) Percutaneous vertebroplasty as a treatment for osteoporotic vertebral compression fractures: a systematic review. Eur Spine J 15(12):1749–1758

    Article  PubMed  Google Scholar 

  25. Freitag M, Gottschalk A, Schuster M, Wenk W, Wiesner L, Standl TG (2006) Pulmonary embolism caused by polymethylmethacrylate during percutaneous vertebroplasty in orthopaedic surgery. Acta Anaesthesiol Scand 50(2):S248–251

    Article  Google Scholar 

  26. Wang LJ, Yang HL, Shi YX, Jiang WM, Chen L (2012) Pulmonary cement embolism associated with percutaneous vertebroplasty or kyphoplasty: a systematic review. Orthop Surg 4(3):182–189

    Article  PubMed  Google Scholar 

  27. Barr J, Resnick D (2005) Vertebroplasty and Kyphoplasty. Thieme Medical Publishers, Stuttgart

    Google Scholar 

  28. Martin S, Hillier N (2009) Characterization of the Novint Falcon haptic device for application as a robot manipulator. ACRA Proceedings, Sydney

    Google Scholar 

  29. Ra JB, Kwon SM, Kim JK, Yi J, Kim KH, Park HW, Kyung K-U, Kwon D-S, Kang HS, Kwon ST, Jiang L, Zeng J, Cleary K, Mun SK (2002) Spine needle biopsy simulator using visual and force feedback. Comput Aided Surg 7(6):353–363

    Article  PubMed  CAS  Google Scholar 

  30. Pettersson J, Palmerius KL, Knutsson H, Wahlstrom O, Tillander B, Borga M (2008) Simulation of patient specific cervical hip fracture surgery with a volume haptic interface. IEEE Trans Biomed Eng 55(4):1255–1265

    Google Scholar 

  31. Palmerius KL, Gudmundsson B, Ynnerman A (2005) General proxy-based haptics for volume visualization. In: Proceedings of the world haptics conference, pp 557–560

  32. Ruspini DC, Kolarov K, Khatib O (1997) Haptic interaction in virtual environments. In: Proceedings of the IEEE-RSJ international conference on intelligent robots and systems, pp S128–S133

  33. Rossignac J, Megahed A, Schneider B (1992) Interactive inspection of solids: cross-sections and interferences. In: Proceedings of ACM Siggraph, pp 353–360

  34. McReynolds T, Blythe D, Grantham B, Nelson S (1998) Advanced graphics programming techniques using OpenGL. In: SIGGRAPH’98 course notes, pp 15–16

  35. http://glbook.gamedev.net/GLBOOK/glbook.gamedev.net/moglgp/advclip.html

  36. Astle D (2006) More OpenGL game programming. Thomson/Course Technology, Boston, MA

    Google Scholar 

Download references

Conflict of interest

Patrick Wucherer, Philipp Stefan, Simon Weidert, Pascal Fallavollita and Nassir Navab declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Fallavollita.

Additional information

P. Wucherer and P. Stefan have equal first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wucherer, P., Stefan, P., Weidert, S. et al. Task and crisis analysis during surgical training. Int J CARS 9, 785–794 (2014). https://doi.org/10.1007/s11548-013-0970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0970-z

Keywords

Navigation