Skip to main content
Log in

Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

 Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images.

Methods

 MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp–Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64–512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom.

Results

 The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data.

Conclusion

 An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Roullot E, Herment A, Bloch I, Nikolova M, Mousseaux E (2000). In: Herment A (eds) Proceedings of the 15th international conference on pattern recognition, vol 3, pp 346–349. doi:10.1109/ICPR.2000.903556

  2. Herment A, Roullot E, Bloch I, Pellot C, Todd-Pokropek A, Mousseaux E (2002). In: Roullot E (ed) Proceedings of the IEEE international symposium on biomedical imaging, pp 947–950. doi:10.1109/ISBI.2002.1029418

  3. Greenspan H (2009) Super-resolution in medical imaging. Comput J 52(1):43–63. doi:10.1093/comjnl/bxm075

    Google Scholar 

  4. Weishaupt VDKD, Marincek B (2006) How does MRI work? An introduction to the physics and function of magnetic resonance imaging. Springer, Berlin

    Google Scholar 

  5. Slavin GS, Bluemke DA (2005) Spatial and temporal resolution in cardiovascular MR imaging: review and recommendations. Radiology 234(2):330–338

    Article  PubMed  Google Scholar 

  6. Peled S, Yeshurun Y (2001) Superresolution in MRI: application to human white matter fiber tract visualization by diffusion tensor imaging. Magn Reson Med 45(1):29

    Article  CAS  PubMed  Google Scholar 

  7. Greenspan H, Oz G, Kiryati N, Peled S (2002) MRI inter-slice reconstruction using super-resolution. Magn Reson Imaging 20(5):437

    Article  CAS  PubMed  Google Scholar 

  8. Peeters RR, Kornprobst P, Nikolova M, Sunaert S, Vieville T, Malandain G, Deriche R, Faugeras O, Ng M, Hecke PV (2004) The use of super-resolution techniques to reduce slice thickness in functional MRI. Int J Imaging Syst Technol 14:131

    Article  Google Scholar 

  9. Carmi E, Liu S, Alon N, Fiat A, Fiat D (2006) Resolution enhancement in MRI. Magn Reson Imaging 24(2):133. doi:10.1016/j.mri.2005.09.011

    Article  PubMed  Google Scholar 

  10. Shilling RZ, Robbie TQ, Bailloeul T, Mewes K, Mersereau RM, Brummer ME (2009) A super-resolution framework for 3-D high-resolution and high-contrast imaging using 2-D multislice MRI. IEEE Trans Med Imaging 28(5):633. doi:10.1109/TMI.2008.2007348

    Article  PubMed  Google Scholar 

  11. Kashou NH (2008) Development of functional studies and methods to better understand visual function. Ph.D. thesis, The Ohio State University

  12. Waltz E, Llinas J (1990) Multisensor data fusion. Artech House, Boston

  13. Hall D (1992) Mathematical techniques in multisensor data fusion. Artech House, Boston

  14. Hall D, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6. doi:10.1109/5.554205

    Article  Google Scholar 

  15. Varshney PK (1997) Scanning the special issue on data fusion. Proc IEEE 85:3

    Google Scholar 

  16. Shepard D (1968). In: Proceedings of the 1968 ACM national conference

  17. Viola P, Wells WM III (1995) IEEE proceedings fifth international conference on computer vision. In: Computer vision, pp 16–23

  18. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) International conference information processing in medical imaging. In: Computational imaging and vision, pp 263–274

  19. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187

    Article  CAS  PubMed  Google Scholar 

  20. Chen CC, Wan YL, Liu HL (2004) Quality assurance of clinical MRI scanners using ACR MRI phantom: preliminary results. J Digit Imaging 17(4):279. doi:10.1007/s10278-004-1023-5

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wells WM, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1(1):35

    Article  PubMed  Google Scholar 

  22. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600

    Article  PubMed  Google Scholar 

  23. Poot DHJ, Meir VV, Sijbers J (2010) General and efficient super-resolution method for multi-slice MRI. Med Image Comput Comput Assist Interv 13(Pt 1):615

    CAS  PubMed  Google Scholar 

  24. Gholipour A, Estroff JA, Sahin M, Prabhu SP, Warfield SK (2010) Maximum a posteriori estimation of isotropic high-resolution volumetric MRI from orthogonal thick-slice scans. Med Image Comput Comput Assist Interv 13(Pt 2):109

    PubMed Central  PubMed  Google Scholar 

  25. Gholipour A, Estroff JA, Warfield SK (2010) Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans Med Imaging 29(10):1739. doi:10.1109/TMI.2010.2051680

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gholipour A, Estroff JA, Barnewolt CE, Connolly SA, Warfield SK (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6(3):329. doi:10.1007/s11548-010-0512-x

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mahmoudzadeh AP, Kashou NH (2013) Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration. Int J Biomed Imaging 2013:19. doi:10.1155/2013/395915

    Article  Google Scholar 

  28. Lehmann TM, Gonner C, Spitzer K (1999) Survey: interpolation methods in medical image processing. IEEE Trans Med Imaging 18(11):1049. doi:10.1109/42.816070

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser H. Kashou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 161 KB)

Supplementary material 2 (pdf 139 KB)

Supplementary material 3 (png 2660 KB)

Supplementary material 4 (wmv 182 KB)

Supplementary material 5 (wmv 424 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashou, N.H., Smith, M.A. & Roberts, C.J. Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme. Int J CARS 10, 19–33 (2015). https://doi.org/10.1007/s11548-014-1002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1002-3

Keywords

Navigation