Skip to main content

Advertisement

Log in

Wavelet denoising for quantum noise removal in chest digital tomosynthesis

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

   Quantum noise impairs image quality in chest digital tomosynthesis (DT). A wavelet denoising processing algorithm for selectively removing quantum noise was developed and tested.

Methods

   A wavelet denoising technique was implemented on a DT system and experimentally evaluated using chest phantom measurements including spatial resolution. Comparison was made with an existing post-reconstruction wavelet denoising processing algorithm reported by Badea et al. (Comput Med Imaging Graph 22:309–315, 1998). The potential DT quantum noise decrease was evaluated using different exposures with our technique (pre-reconstruction and post-reconstruction wavelet denoising processing via the balance sparsity-norm method) and the existing wavelet denoising processing algorithm. Wavelet denoising processing algorithms such as the contrast-to-noise ratio (CNR), root mean square error (RMSE) were compared with and without wavelet denoising processing. Modulation transfer functions (MTF) were evaluated for the in-focus plane. We performed a statistical analysis (multi-way analysis of variance) using the CNR and RMSE values.

Results

   Our wavelet denoising processing algorithm significantly decreased the quantum noise and improved the contrast resolution in the reconstructed images (CNR and RMSE: pre-balance sparsity-norm wavelet denoising processing versus existing wavelet denoising processing, \(P{<\,}0.05\); post-balance sparsity-norm wavelet denoising processing versus existing wavelet denoising processing, \(P{<\,} 0.05\); CNR: with versus without wavelet denoising processing, \(P{<\,} 0.05\)). The results showed that although MTF did not vary (thus preserving spatial resolution), the existing wavelet denoising processing algorithm caused MTF deterioration.

Conclusions

   A balance sparsity-norm wavelet denoising processing algorithm for removing quantum noise in DT was demonstrated to be effective for certain classes of structures with high-frequency component features. This denoising approach may be useful for a variety of clinical applications for chest digital tomosynthesis when quantum noise is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dobbins JT, Mcadams HP, Song JW et al (2008) Digital tomosynthesis of the chest for lung nodule detection: interim sensitivity results from an ongoing HIH-sponsored trial. Med Phys 35:2554–2557

    Article  PubMed Central  Google Scholar 

  2. Vikgren J, Zachrisson S, Svalkvist A et al (2008) Tomosynthesis: comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study. Radiology 249:1034–1041

    Article  PubMed  Google Scholar 

  3. Quaia E, Baratella E, Cioffi V et al (2010) The value of digital tomosynthesis in the diagnosis of suspected pulmonary lesions on chest radiography. Acad Radiol 17:1267–1274

    Article  PubMed  Google Scholar 

  4. Lee G, Jeong YJ, Kim KI et al (2013) Comparison of chest digital tomosynthesis and chest radiography for detection of asbestos-related pleuropulmonary disease. Clin Radiol 68:376–382

    Article  CAS  PubMed  Google Scholar 

  5. Sone S, Kasuga T, Sakai F et al (1991) Development of a high-resolution digital tomosynthesis system and its clinical application. Radiographics 11:807–822

    Article  CAS  PubMed  Google Scholar 

  6. Sone S, Kasuga T, Sakai F et al (1995) Image processing in the digital tomosynthesis for pulmonary imaging. Eur Radiol 5:96–101

    Article  Google Scholar 

  7. Ghosh Roy DN, Kruger RA, Yih B et al (1985) Selective plane removal in limited angle tomographic imaging. Med Phys 12:65–70

    Article  CAS  PubMed  Google Scholar 

  8. Matsuo H, Iwata A, Horiba I et al (1993) Three-dimensional image reconstruction by digital tomosynthesis using inverse filtering. IEEE Trans Med Imaging 12:307–313

    Article  CAS  PubMed  Google Scholar 

  9. Knutsson HE, Edholm P, Granlund HG et al (1980) Ectomography—a new radiographic reconstruction method I theory and error estimates. IEEE Trans Biomed Eng 27:640–648

    Article  CAS  PubMed  Google Scholar 

  10. Petersson CU, Edholm P, Granlund HG et al (1980) Ectomography—a new radiographic reconstruction method II computer-simulated experiments. IEEE Trans Biomed Eng 27:649–655

    Article  CAS  PubMed  Google Scholar 

  11. Chakraborty DP, Yester MV, Barnes GT et al (1984) Self-masking subtraction tomosynthesis. Radiology 150:225–229

    Article  CAS  PubMed  Google Scholar 

  12. Ruttiman UE, Groenhuis RA, Webber RL (1984) Restoration of digital multi-plane tomosynthesis by a constrained iteration method. IEEE Trans Med Imaging 3:141–148

    Article  Google Scholar 

  13. Kolitsi Z, Panayiotakis G, Pallikarakis N (1993) A method for selective removal of out-of-plane structures in digital tomosynthesis. Med Phys 20:47–50

    Article  CAS  PubMed  Google Scholar 

  14. Sone S, Kasuga T, Sakai F et al (1993) Chest imaging with dual-energy subtraction digital tomosynthesis. Acta Radiol 34:346–350

    Article  CAS  PubMed  Google Scholar 

  15. Michael U, Akram A (1996) A review of wavelets in biomedical application. Proc IEEE 84:626–638

    Article  Google Scholar 

  16. Donoho DL, Johnstone JM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    Article  Google Scholar 

  17. Kolaczyk ED (1996) A wavelet shrinkage approach to tomographic image reconstruction. J Am Stat Assoc 91:1079–1090

    Article  Google Scholar 

  18. Nitzken M, Bajaj N, Aslan S et al (2013) Local wavelet-based filtering of electromyographic signals to eliminate the electrocardiographic-induced artifacts in patients with spinal cord injury. J Biomed Sci Eng 6:1–13

    Article  Google Scholar 

  19. Nitkzen M, Beache G, Elnakib A et al (2012) Improving full-cardiac cycle strain estimation from tagged CMR by accurate modeling of 3D image appearance characteristics. In: Proceedings of IEEE international symposium on biomedical imaging (ISBI’12) Barcelona Spain May 2–5, pp 462–465

  20. Badea C, Kolitsi Z, Pallikarakis N (1998) A wavelet method for removal of out-of-plane structures in digital tomosynthesis. Comput Med Imaging Graph 22:309–315

    Article  CAS  PubMed  Google Scholar 

  21. Antoniadis A, Gregoire G, Nason G (1999) Density and hazard rate estimation for right-censored data using wavelet methods. J R Stat Soc B 61:63–84

    Article  Google Scholar 

  22. Hall P, Penev S, Kerkyacharian G, Picard D et al (1997) Numerical performance of block thresholded wavelet estimators. Stat Comput 7:115–124

    Article  Google Scholar 

  23. Donoho DL, Johnstone IM, Kerkyacharian G et al (1996) Density estimation by wavelet thresholding. Ann Stat 24:508–539

    Article  Google Scholar 

  24. Ullman G, Dance DR, Sandborg M et al (2010) A monte carlo-based model for simulation of digital chest tomosynthesis. Radiat Prot Dosim 139:159–163

    Google Scholar 

  25. Svalkvist A, Bath M (2010) Simulation of dose reduction in tomosynthesis. Med Phys 37:258–269

    Article  PubMed  Google Scholar 

  26. Bath M, Hakansson A, Tingberg A et al (2005) Method of simulating dose reduction for digital radiographic systems. Radiat Prot Dosimetry 114:253–259

    Article  PubMed  Google Scholar 

  27. Mathworks Inc (2011) MATLAB. http://www.mathworks.com/products/matlab/

  28. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Classics in Applied Mathematics 33. (SIAM, Philadelphia)

  29. Kume Y, Doi K, Ohara K et al (1986) Investigation of basic imaging properties in digital radiography. 10. Structure mottle of II-TV digital imaging. Med Phys 13:843–849

    Article  CAS  PubMed  Google Scholar 

  30. Giger ML, Ohara K, Doi K (1986) Investigation of basic imaging properties in digital radiography. 9. Effect of displayed grey levels on signal detection. Med Phys 13:312–318

    Article  CAS  PubMed  Google Scholar 

  31. Kasap S, Frey JB, Belev G et al (2011) Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors. Sensors (Basel) 11:5112–5157

    Google Scholar 

  32. Mallat S, Zhong S (1992) Characterization of signals from multiscale edges. IEEE Trans Pattern Anal Mach Intell 14:710–732

    Article  Google Scholar 

  33. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  Google Scholar 

  34. Mathworks Inc (2011) Wavelet toolbox. http://www.mathworks.com/products/wavelet/

  35. Yamada Y, Jinzaki M, Hasegawa I et al (2011) Fast scanning tomosynthesis for the detection of pulmonary nodules. Invest Raiol 46:471–477

    Google Scholar 

  36. Tapiovaara M, Siiskonen T (2008) A Monte Carlo program for calculating patient doses in medical x-ray examinations (2nd Ed.). Report No. STUK-A231 STUK Helsinki, Finland

  37. Rossmann K (1969) Point spread-function, line spread-function, and modulation transfer function. Radiology 93:257–272

    Article  CAS  PubMed  Google Scholar 

  38. Sabol JM (2009) A Monte Carlo estimation of effective dose in chest tomosynthesis. Med Phys 36:5480–5487

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Gomi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomi, T., Nakajima, M. & Umeda, T. Wavelet denoising for quantum noise removal in chest digital tomosynthesis. Int J CARS 10, 75–86 (2015). https://doi.org/10.1007/s11548-014-1003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1003-2

Keywords

Navigation