Skip to main content

Advertisement

Log in

Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

   In most orthopedic surgeries, knowing how far to insert surgical tools is crucial. The objective of this study was to provide guidance information on depth without tracking surgical tools. A previously developed laser guidance system for linear surgical tool insertion uses two laser beams that display the insertion point and orientation on the skin surface. However, the system only provides 4 degrees of freedom guidance (an entry point on the planned pathway line and the orientation) but do not inform surgeons on the ideal insertion depth.

Method

   A 5-DOF guidance method was developed to provide guidance information by direct projection onto the surgical area using laser beams without tracking markers. A position and orientation guidance performed by two laser beams and depth guidance performed by a single laser beam are appeared on the surgical area in turn. However, depth point appears on the surgical tool side face with some error because of tool radius. Using the actual depth position, insertion path vector and location of the laser sources, the correct depth point on the tool’s surface is calculated by the proposed method. So, this system can indicate and navigate the 5-DOF which is planning path and the correct depth point.

Results

   An evaluation of the accuracy of depth guidance revealed a depth guidance error of \(0.55\pm 0.29\) mm and results from phantom target insertions revealed overall system accuracies of \(1.44 \pm 1.09\) mm, \(0.91^{\circ }\pm 0.82^{\circ }\). In addition, overall system accuracies of application feasibility experiment under the X-ray condition were \(1.94 \pm 0.98\,\hbox {mm}, 1.39^{\circ } \pm 1.30^{\circ }\).

   Conclusion

A new surgical tool depth insertion method was developed using a fluorolaser guidance system. This tool informs surgeons of the surgical tool tip depth assuming that the insertion point and orientation are correct. The new method was tested successfully in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fuchs H, State A, Pisano ED et al (1996) Towards performing ultrasound-guided needle biopsies from within a head-mounted display. Lect Notes Comput Sci 1131:591–600

    Article  Google Scholar 

  2. Blackwell M, Nikou C, DiGioia AM et al (1998) An image overlay system for medical data visualization. Lect Notes Comput Sci 1496:232–240

    Article  Google Scholar 

  3. Fichtinger G, Deguet A, Masamune K et al (2005) Image overlay guidance for needle insertion in CT scanner. IEEE Trans Bioemed Eng 52(8):1415–1424

    Article  Google Scholar 

  4. Liao H, Ishihara H, Tran HH et al (2008) Fusion of laser guidance and 3-d autostereoscopic image overlay for precision-guided surgery. Lect Notes Comput Sci 5128:367–376

    Article  Google Scholar 

  5. Volonte F, Pugin F, Bucher P et al (2011) Augmented reality and image overlary navigation with OsiriX in laparoscopic and robotic surgery: not only a matter of fashion. J Hepatobiliary Pancreat Sci 18:506–509

    Article  PubMed  Google Scholar 

  6. Malik JM, Kamiryo T, Goble J et al (1995) Stereotactic laser-guided approach to distal middle cerebral artery aneurysms. Acta Neurochirurgica 132:138–144

    Article  CAS  PubMed  Google Scholar 

  7. Lavallee S, Toroccaz J, Sautot P et al (1996) Computer-assisted spinal surgery using anatomiy-based registration. Computer-integrated surgery: technology and clinical applications. MIT Press, Cambridge

    Google Scholar 

  8. Hussman KL, Chalouplca JC, Berger SB (1998) Frameless laser-guided stereotaxis: a system for CT-monitored neurosurgical interventions. Stereotect Funct Neurosurg 71:62–75

    Article  CAS  Google Scholar 

  9. Glossop N, Wedlake C, Moore J et al (2002) Laser projection augumented reality system for computer assited surgery. Lect Notes Comput Sci 2879:239–246

    Article  Google Scholar 

  10. Marmurek J, Wedlake C, Pardasani U et al (2006) Image-guided laser projection for port placement in minimally invasive surgery. Stud Health Technol Inform 119:367–372

    PubMed  Google Scholar 

  11. Nitta N, Takahashi M, Tanaka T et al (2007) Laser-guided computed tomography puncture system: simulation experiments using artificial phantom lesions and preliminary clinical experience. Radiat Med 25(4):187–193

    Article  PubMed  Google Scholar 

  12. Sasama T, Sugano N, Sato Y, Momoi Y, Koyama T, Nakajima Y, Sakuma I, Fujie M, Yonenobu K, Ochi T, Tamura S (2002) A novel laser guidance system for alignment of linear surgical tools: its principles and performance evaluation as a man–machine system medical image computing and computer-assisted intervention—MICCAI 2002. In: Dohi T, Kikinis R (eds) vol 2489. Lecture notes in computer science. Springer, Berlin, pp 25–132. doi:10.1007/3-540-45787-9_16

  13. Liang JT, Doke T, Onogi S, Ohashi S, Ohnishi I, Sakuma I, Nakajima Y (2012) A fluorolaser navigation system to guide linear surgical tool insertion. Int J Comput Assist Radiol Surg 7(6):931–939. doi:10.1007/s11548-012-0743-0

  14. Nakajima Y, Dohi T, Sasama T, Momoi Y, Sugano N, Tamura Y, Lim S, Sakuma I, Mitsuishi M, Koyama T, Yonenobu K, Ohashi S, Bessho M, Ohnishi I (2012) Surgical tool alignment guidance by drawing two cross-sectional laser-beam planes. IEEE Trans Biomed Eng 60(6):1467–1476

    Article  PubMed  Google Scholar 

  15. Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K (2000) Com-plications of pedicle screw fixation in reconstructive surgery of the cervicalspine. Spine 25:962–969

    Article  CAS  PubMed  Google Scholar 

  16. Belkoff S, Molloy S (2003) Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine 28:1555–1559

    PubMed  Google Scholar 

  17. Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, Weber S (2012) Evaluation of a portable image overlay projector for the visualization of surgical navigation data: phantom studies. Int J Comp Assis Radio Surg 7:547–556

    Article  CAS  Google Scholar 

  18. Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, Weber S (2001) Virtual fluoroscopy: computer-assisted fluoroscopic navigation. Spine 26:347–351

    Article  Google Scholar 

  19. Hofstetter R, Slomczykowski M, Sati M, Nolte L (1999) Fluoroscopy as an imaging means for computer-assisted surgical navigation. Comp Assis Surg 4:65–76

    Article  CAS  Google Scholar 

  20. Bellemare M, Acosta O, Goksu C, Kulik C, Rioual K, Lu-cas A (2004) Depth-map-based scene analysis for active navigation in virtual angioscopy. IEEE Trans Med Img 23:1380–1390

    Article  Google Scholar 

  21. Smithwick Q, Seibel E eds (2002) Depth enhancement using a scanning fiber optical endoscope. In: Proceedings of SPIE BiOS

  22. Schick U, Dohnert J (2002) Technique of microendoscopy in medial lumbar disc herniation. Minim Invasive Neurosurg 45:139–141

  23. Tonetti J, Carrat L, Blendea S, Merloz P, Troccaz J, Lavallee S, Chirossel J (2001) Clinical results of percutaneous pelvic surgery. Computer assisted surgery using ultrasound compared to standard fluoroscopy. Comp Aided Surg 6:204–211

    Article  CAS  Google Scholar 

  24. Nakajima Y, Yamamoto H, Sato Y, Sugano N, Momoi Y, Sasama T, Koyama T, Tamura Y, Yonenobu K, Sakuma I, Yoshikawa H, Ochi T, Tamura S (2004) Available range analysis of laser guidance system and its application to monolithic integration with optical tracker. Int Congress Ser 1268:449–454

    Article  Google Scholar 

  25. Lim S, Douke T, Onogi S, Nakajima Y, Mitsuishi M, Sakuma I, Bessho M, Ohnishi I, Nakamura K (2010) Assessment for the feasibility of external-fixation pin guidance using laser navigation. Jpn Soc Comput Aided Surg 12:511–518

    Google Scholar 

  26. Navab N, Mitschke M, Schutz O (1999), Camera-augmented mobile c-arm (camc) application: 3d reconstruction using a low-cost mobile c-arm. In: Lecture notes in computer science, vol 1679. MICCAI’99, pp 688–697

  27. Ferreira S, Bruns R, Ferreira H, Matos G, David J, brandao G, Silva E, Portugal L, Reis P, Souza A, Santos W (2007) Box-behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta 597:179–186

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehito Doke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doke, T., Liang, J.T., Onogi, S. et al. Fluoroscopy-based laser guidance system for linear surgical tool insertion depth control. Int J CARS 10, 275–283 (2015). https://doi.org/10.1007/s11548-014-1079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1079-8

Keywords

Navigation