Skip to main content
Log in

Subject-specific real-time respiratory liver motion compensation method for ultrasound-MRI/CT fusion imaging

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Ultrasound-MRI/CT fusion imaging is widely used in minimal invasive surgeries, such as liver biopsy and tumor ablation. However, respiration-induced quasi-periodic liver motion and deformation cause unacceptable misalignment of the fusion images (i.e., fusion error). A subject-specific liver motion model based on skin-mounted position sensor and corresponding ultrasound liver image sequence was developed to compensate for liver motion.

Methods

External surrogate respiratory motion signal is used to predict internal liver motion. An electromagnetic position sensor fixed on abdominal skin is introduced to track the respiratory motion, and 2D ultrasound images are used to track the liver motion synchronously. Based on these measurements, a subject-specific model describing the relationship of respiratory skin motion and internal liver motion is built and applied in real time (ultrasound-MRI/CT fusion imaging system) to predict and to compensate for the liver motion due to respiratory movement. Feasibility experiments and clinical trials were carried out on a phantom and eight volunteers.

Results

Qualitative and quantitative analyses and visual inspections performed by experienced clinicians show that the proposed model could effectively compensate for the liver motion, and the ratio of motion-compensated fusion error to the original varied from 10 % (0.96/9.40 mm) to 28 % (2.90/10.22 mm).

Conclusions

An online liver motion modeling and compensation method was developed that provides surgeons with stable and accurate multimodality fusion images in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Trobaugh JW, Kessman P, Dietz D, Bucholz R (1997) Ultrasound in image fusion: a framework and applications. Ultrasonics Symposium, 1997 Proceedings, 1997 IEEE 2:1393–1396. doi:10.1109/ULTSYM.1997.661837

  2. Nakai M, Sato M, Sahara S, Takasaka I, Kawai N, Minamiguchi H, Tanihata H, Kimura M, Takeuchi N (2009) Radiofrequency ablation assisted by real-time virtual sonography and CT for hepatocellular carcinoma undetectable by conventional sonography. Cardiovasc Interv Radiol 32(1):62–69

    Article  Google Scholar 

  3. Marks L, Young S, Natarajan S (2013) MRI-ultrasound fusion for guidance of targeted prostate biopsy. Curr Opin Urol 23(1):43–50. doi:10.1097/MOU.0b013e32835ad3ee

    Article  PubMed Central  PubMed  Google Scholar 

  4. Stang A, Keles H, Hentschke S, Seydewitz C, Keuchel M, Pohland C, Dahlke J, Weilert H, Wessling J, Malzfeldt E (2010) Real-time ultrasonography-computed tomography fusion imaging for staging of hepatic metastatic involvement in patients with colorectal cancer: initial results from comparison to US seeing separate CT images and to multidetector-row CT alone. Investig Radiol 45(8):491–501

    Article  Google Scholar 

  5. Beller S, Hunerbein M, Eulenstein S, Lange T, Schlag PM (2007) Feasibility of navigated resection of liver tumors using multiplanar visualization of intraoperative 3-dimensional ultrasound data. Ann Surg 246(2):288–294. doi:10.1097/01.sla.0000264233.48306.99

    Article  PubMed Central  PubMed  Google Scholar 

  6. Xu S, Kruecker J, Turkbey B, Glossop N, Singh AK, Choyke P, Pinto P, Wood BJ (2008) Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg 13(5):255–264

  7. Clevert D, Paprottka P, Helck A, Reiser M, Trumm C (2012) Image fusion in the management of thermal tumor ablation of the liver. Clin Hemorheol Microcirc 52(2):205–216

    CAS  PubMed  Google Scholar 

  8. Helck A, D’Anastasi M, Notohamiprodjo M, Thieme S, Sommer W, Reiser M, Clevert DA (2012) Multimodality imaging using ultrasound image fusion in renal lesions. Clin Hemorheol Microcirc 50(1–2):79–89. doi:10.3233/CH-2011-1445

    CAS  PubMed  Google Scholar 

  9. Ewertsen C, Hansen KL, Henriksen BM, Nielsen MB (2012) Improving accuracy for image fusion in abdominal ultrasonography. Diagnostics 2(4):34–41. doi:10.3390/diagnostics2030034

    Article  Google Scholar 

  10. Nicolau S, Pennec X, Soler L, Ayache N (2007) Clinical evaluation of a respiratory gated guidance system for liver punctures. In: Medical image computing and computer-assisted intervention-MICCAI 2007. Springer, Berlin, pp 77–85

  11. Wunderink W, Mendez Romero A (2008) Reduction of respiratory liver tumor motion by abdominal compression in stereotactic body frame, analyzed by tracking fiducial markers implanted in liver. Int J Radiat Oncol Biol Phys 71(3):907–915. doi:10.1016/j.ijrobp.2008.03.010

    Article  PubMed  Google Scholar 

  12. Remouchamps VM, Letts N, Vicini FA, Sharpe MB, Kestin LL, Chen PY, Martinez AA, Wong JW (2003) Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy. Int J Radiat Oncol Biol Phys 56(3):704–715

    Article  PubMed  Google Scholar 

  13. Biro P, Spahn D, Pfammatter T (2009) High-frequency jet ventilation for minimizing breathing-related liver motion during percutaneous radiofrequency ablation of multiple hepatic tumours. Br J Anaesth 102(5):650–653

    Article  CAS  PubMed  Google Scholar 

  14. Kothary N, Heit JJ, Louie JD, Kuo WT, Loo BW Jr, Koong A, Chang DT, Hovsepian D, Sze DY, Hofmann LV (2009) Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol 20(2):235–239

    Article  PubMed  Google Scholar 

  15. Schweikard A, Shiomi H, Adler J (2005) Respiration tracking in radiosurgery without fiducials. Int J Med Robot Comput Assist Surg 1(2):19–27

    Article  CAS  Google Scholar 

  16. Hakime A, Barah A, Deschamps F, Farouil G, Joskin J, Tselikas L, Auperin A, de Baere T (2013) Prospective comparison of freehand and electromagnetic needle tracking for US-guided percutaneous liver biopsy. J Vasc Interv Radiol 24(11):1682–1689

    Article  PubMed  Google Scholar 

  17. Volumetric Measurement and Image Fusion. Ascension Technology Corporation. http://www.ascension-tech.com/medical/volumetric.php. Accessed 29 Jan 2012

  18. iU22 xMATRIX Ultrasound System with PercuNav. Philips. http://www.healthcare.philips.com/main/products/ultrasound/systems/percunav/percunav_iu22.wpd. Accessed 2 Sept 2013

  19. SMART FUSION. http://www.myaplio.com/smartfusion/. Accessed 26 Nov 2013

  20. GE Healthcare Introduces Ultrasound Fusion; New LOGIQ E9 Merges Real-time Ultrasound with CT, MR AND PET. (2008) GE Healthcare. http://www.newswire.ca/fr/story/344723/ge-healthcare-introduces-ultrasound-fusion-new-logiq-e9-merges-real-time-ultrasound-with-ct-mr-and-pet. Accessed 7 Dec 2013

  21. Fusion of Images: CT and Ultrasound Combined. (2012) SIEMENS. http://www.siemens.com/innovation/en/news/2012/e_inno_1201_2.htm. Accessed 26 Nov 2013

  22. Zhu L, Ding H, Zhu L, Wang G (2011) A robust registration method for real-time ultrasound image fusion with pre-acquired 3D dataset. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 2011, pp 2638–2641. doi:10.1109/IEMBS.2011.6090727

  23. Khamene A, Warzelhan JK, Vogt S, Elgort D, Chefd’Hotel C, Duerk JL, Lewin J, Wacker FK, Sauer F (2004) Characterization of internal organ motion using skin marker positions. In: Medical image computing and computer-assisted intervention-MICCAI 2004. Springer, New York, pp 526–533

  24. Blackall JM, Penney GP, King AP, Hawkes DJ (2005) Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation. IEEE Trans Med Imaging 24(11):1405–1416

    Article  PubMed  Google Scholar 

  25. He T, Xue Z, Xie W, Wong ST (2010) Online 4-D CT estimation for patient-specific respiratory motion based on real-time breathing signals. In: Medical image computing and computer-assisted intervention-MICCAI 2010. Springer, New York, pp 392–399

  26. Tanner C, Boye D, Samei G, Szekely G (2012) Review on 4D models for organ motion compensation. Crit Rev\(^{\rm TM}\) Biomed Eng 40(2)

  27. Atkinson D, Burcher M, Declerck J, Noble JA (2001) Respiratory motion compensation for 3-D freehand echocardiography. Ultrasound Med Biol 27(12):1615–1620

    Article  CAS  PubMed  Google Scholar 

  28. De Silva T, Fenster A, Bax J, Gardi L, Romagnoli C, Samarabandu J, Ward AD (2012) 2D–3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy. SPIE Medical Imaging:83160O–83160O-83166

  29. Wein W, Cheng J-Z, Khamene A (2008) Ultrasound based respiratory motion compensation in the abdomen. MICCAI 2008 Worshop on Image Guidance and Computer Assistance for Softissue Intervetions 32(6):294

  30. Blackall J, Ahmad S, Miquel M, McClelland J, Landau D, Hawkes D (2006) MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning. Phys Med Biol 51(17):4147

    Article  CAS  PubMed  Google Scholar 

  31. Rohlfing T, Maurer CR Jr, O’Dell WG, Zhong J (2004) Modeling liver motion and deformation during the respiratory cycle using intensity-based nonrigid registration of gated MR images. Med Phys 31:427

    Article  PubMed  Google Scholar 

  32. Brandner ED, Wu A, Chen H, Heron D, Kalnicki S, Komanduri K, Gerszten K, Burton S, Ahmed I, Shou Z (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65(2):554–560

    Article  PubMed  Google Scholar 

  33. Yang M, Ding H, Wang X, Wang G (2014) An analysis of respiration induced liver motion mode. J Zhejiang Univ (Engineering Science) 48(9) (in press)

  34. Gierga DP, Brewer J, Sharp GC, Betke M, Willett CG, Chen GT (2005) The correlation between internal and external markers for abdominal tumors: implications for respiratory gating. Int J Radiat Oncol Biol Phys 61(5):1551–1558

  35. Ernst F, Bruder R, Schlaefer A, Schweikard A (2012) Correlation between external and internal respiratory motion: a validation study. Int J Comput Assist Radiol Surg 7(3):483–492. doi:10.1007/s11548-011-0653-6

  36. De Groote A, Wantier M, Chéron G, Estenne M, Paiva M (1997) Chest wall motion during tidal breathing. J Appl Physiol 83(5):1531–1537

    PubMed  Google Scholar 

  37. Li PC, Lee WN (2002) An efficient speckle tracking algorithm for ultrasonic imaging. Ultrason Imaging 24(4):215–228

    Article  PubMed  Google Scholar 

  38. Shlens J (2005) A tutorial on principal component analysis. Systems Neurobiology Laboratory, University of California at San Diego 82

  39. Yeung F, Levinson SF, Parker KJ (1998) Multilevel and motion model-based ultrasonic speckle tracking algorithms. Ultrasound Med Biol 24(3):427–441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from National Basic Research Program of China (2011CB707701), and National Natural Science Foundation of China (61361160417, 81271735, 81127003).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Ding, H., Kang, J. et al. Subject-specific real-time respiratory liver motion compensation method for ultrasound-MRI/CT fusion imaging. Int J CARS 10, 517–529 (2015). https://doi.org/10.1007/s11548-014-1085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-014-1085-x

Keywords

Navigation