Skip to main content
Log in

Towards markerless navigation for percutaneous needle insertions

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Percutaneous needle insertions are increasingly used for diagnosis and treatment of abdominal lesions. The challenging part of computed tomography (CT)-guided punctures is the transfer of the insertion trajectory planned in the CT image to the patient. Conventionally, this often results in several needle repositionings and control CT scans. To address this issue, several navigation systems for percutaneous needle insertions have been presented; however, none of them has thus far become widely accepted in clinical routine. Their benefit for the patient could not exceed the additional higher costs and the increased complexity in terms of bulky tracking systems and specialized markers for registration and tracking.

Methods

We present the first markerless and trackerless navigation concept for real-time patient localization and instrument guidance. It has specifically been designed to be integrated smoothly into the clinical workflow and does not require markers or an external tracking system. The main idea is the utilization of a range imaging device that allows for contactless and radiation-free acquisition of both range and color information used for patient localization and instrument guidance.

Results

A first feasibility study in phantom and porcine models yielded a median targeting accuracy of 6.9 and 19.4 mm, respectively.

Conclusions

Although system performance remains to be improved for clinical use, expected advances in camera technology as well as consideration of respiratory motion and automation of the individual steps will make this approach an interesting alternative for guiding percutaneous needle insertions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note that the range data could as well be used to generate tracking information when post-processed with an instrument/object tracking algorithm (e.g., [39]). With the term tracking system, we refer to the widely applied definition where specialized hardware (cameras and tracking markers) are used for generating tracking information.

  2. This porcine trial was approved by the Committee for Animal Care and Research of the Karlsruhe regional council (G-83/12).

  3. The statistical power of these calculations (\(n = 10\)) may still not be sufficient to reliably detect significant differences.

    Fig. 8
    figure 8

    Targeting accuracies and registration error of the phantom study (“Phantom study’ section) with the markerless navigation system for PMD CamCube 3.0 and Microsoft Kinect for Xbox 360. The box plots show the targeting error divided into the overall error, the longitudinal error and the lateral error as well as the registration accuracy as the fiducial registration error (FRE) for all trials (\(N = 10\)) in mm (median, mininimum/maximum, upper/lower quartile)

  4. Note that one trial was not considered in the error calculation due to an erroneous visualization of the implemented prototype which can easily be fixed in future versions.

References

  1. Bale R, Widmann G, Schullian P, Haidu M, Pall G, Klaus A, Weiss H, Biebl M, Margreiter R (2011) Percutaneous stereotactic radiofrequency ablation of colorectal liver metastases. Eur Radiol 22(4):930–937

  2. Banovac F, Cheng P, Campos-Nanez E, Kallakury B, Popa T, Wilson E, Abeledo H, Cleary K (2010) Radiofrequency ablation of lung tumors in swine assisted by a navigation device with preprocedural volumetric planning. J Vasc Interv Radiol 21(1):122–129

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bauer S, Seitel A, Hofmann H, Blum T, Wasza J, Balda M, Meinzer HP, Navab N, Hornegger J, Maier-Hein L (2013) Real-time range imaging in health care: a survey. In: Grzegorzek M, Theobalt C, Koch R, Kolb A (eds) Time-of-Flight and depth imaging. Sensors, algorithms, and applications, lecture notes in computer science, vol 8200. Springer, Berlin, pp 228–254

    Chapter  Google Scholar 

  4. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal 14:239–256

    Article  Google Scholar 

  5. Bolliger SA, Filograna L, Spendlove D, Thali MJ, Dirnhofer S, Ross S (2010) Postmortem imaging-guided biopsy as an adjuvant to minimally invasive autopsy with CT and postmortem angiography: a feasibility study. Am J Roentgenol 195(5):1051–1056

    Article  Google Scholar 

  6. Boykov Y, Kolmogorov V (2004) An experimental comparison of Min-Cut/Max-Flow algorithms for energy minimization in vision. IEEE T Pattern Anal 26(9):1124–1137

    Article  Google Scholar 

  7. Chetverikov D, Stepanov D, Krsek P (2005) Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image Vision Comput 23(3):299–309

    Article  Google Scholar 

  8. Diotte B, Wang L, Weidert S, Thaller P, Euler E, Fallavollita P, Navab N (2012) Radiation-free drill guidance in interlocking of intramedullary nails. In: MICCAI 2012, part I, lecture notes in computer science, vol 7510, pp 18–25

  9. dos Santos TR, Seitel A, Kilgus T, Suwelack S, Wekerle AL, Kenngott H, Speidel S, Schlemmer HP, Meinzer HP, Heimann T, Maier-Hein L (2014) Pose-independent surface matching for intra-operative soft-tissue marker-less registration. Med Image Anal 18(7):1101–1114

    Article  PubMed  Google Scholar 

  10. Fichtinger G, Deguet A, Fischer G, Iordachita I, Balogh E, Masamune K, Taylor RH, Fayad LM, de Oliveira M, Zinreich SJ (2005) Image overlay for CT-guided needle insertions. Comput Aided Surg 10(4):241–255

    Article  PubMed  Google Scholar 

  11. Fitzpatrick JM, West JB, Calvin R Maurer J (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17:694–702

    Article  CAS  PubMed  Google Scholar 

  12. Foix S, Alenya G, Torras C (2011) Lock-in time-of-flight (ToF) cameras: a survey. IEEE Sensors J 11(9):1917–1926

    Article  Google Scholar 

  13. Fuchs S, Hirzinger G (2008) Extrinsic and depth calibration of tof-cameras. In: IEEE conference on computer vision and pattern recognition

  14. Grzegorzek M, Theobalt C, Koch R, Kolb A (eds) (2013) Time-of-Flight and depth imaging—sensors, algorithms, and applications. Springer, Berlin

    Google Scholar 

  15. Hollander M, Wol DA (1999) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  16. Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am 4:629

    Article  Google Scholar 

  17. Hostettler A, Nicolau SA, Soler L, Rmond Y, Marescaux J (2008) A real-time predictive simulation of abdominal organ positions induced by free breathing. In: Biomedical simulation, lecture notes in computer science, vol 5104, pp 89–97

  18. Khamene A, Wacker F, Vogt S, Azar F, Wendt M, Sauer F, Lewin J (2003) An augmented reality system for MRI-guided needle biopsies. Stud Health Technol Inf 94:151–157

    Google Scholar 

  19. Khan MF, Dogan S, Maataoui A, Gurung J, Schiemann M, Ackermann H, Wesarg S, Sakas G, Vogl TJ (2005) Accuracy of biopsy needle navigation using the Medarpa system-computed tomography reality superimposed on the site of intervention. Eur Radiol 15(11):2366–2374

    Article  PubMed  Google Scholar 

  20. Khati N, Gorodenker J, Hill M (2011) Ultrasound-guided biopsies of the abdomen. Ultrasound Q 27(4):255–268

    Article  PubMed  Google Scholar 

  21. Kilgus T, Heim E, Haase S, Prüfer S, Müller S. A.ller M, Seitel A, Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen K, Maier-Hein L (2014) Mobile markerless augmented reality and its application in forensic medicine. Int J Comput Assist Radiol Surg (Epub ahead of print).doi:10.1007/s11548-014-1106-9

  22. Kolb A, Barth E, Koch R, Larsen R (2009) Time-of-Flight sensors in computer graphics. In: Eurographics—state of the art reports, pp 119–134

  23. Krücker J, Xu S, Venkatesan A, Locklin JK, Amalou H, Glossop N, Wood BJ (2011) Clinical utility of real-time fusion guidance for biopsy and ablation. J Vasc Interv Radiol 22(4):515–524

    Article  PubMed Central  PubMed  Google Scholar 

  24. Maier-Hein L, Franz A, dos Santos T, Schmidt M, Fangerau M, Meinzer H, Fitzpatrick J (2012) Convergent iterative closest-point algorithm to accommodate anisotropic and inhomogenous localization error. IEEE Trans Pattern Anal 34(8):1520–1532

    Article  Google Scholar 

  25. Maier-Hein L, Groch A, Bartoli A, Bodenstedt S, Boissonnat G, Chang PL, Clancy NT, Elson DS, Haase S, Heim E, Hornegger J, Jannin P, Kenngott H, Kilgus T, Muller-Stich B, Oladokun D, Rohl S, Dos Santos TR, Schlemmer HP, Seitel A, Speidel S, Wagner M, Stoyanov D (2014) Comparative validation of single-shot optical techniques for laparoscopic 3-D surface reconstruction. IEEE Trans Med Imaging 33(10):1913–1930

    Article  CAS  PubMed  Google Scholar 

  26. Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb A, Rodrigues M, Sorger J, Speidel S, Stoyanov D (2013) Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 17(8):974–996

    Article  CAS  PubMed  Google Scholar 

  27. Maier-Hein L, Tekbas A, Seitel A, Pianka F, Müller SA, Satzl S, Schawo S, Radeleff B, Tetzlaff R, Franz AM, Müller-Stich BP, Wolf I, Kauczor HU, Schmied BM, Meinzer HP (2008) In vivo accuracy assessment of a needle-based navigation system for CT-guided radiofrequency ablation of the liver. Med Phys 35(12):5386–5396

    Article  Google Scholar 

  28. Maleike D, Nolden M, Meinzer HP, Wolf I (2009) Interactive segmentation framework of the medical imaging interaction toolkit. Comput Meth Prog Biomed 96(1):72–83

    Article  CAS  Google Scholar 

  29. Mersmann S, Seitel A, Erz M, Jähne B, Nickel F, Mieth M, Mehrabi A, Maier-Hein L (2013) Calibration of time-of-flight cameras for accurate intraoperative surface reconstruction. Med Phys 40(8):082701

    Article  PubMed  Google Scholar 

  30. Moser C, Becker J, Deli M, Busch M, Boehme M, Groenemeyer DHW (2013) A novel laser navigation system reduces radiation exposure and improves accuracy and workflow of CT-guided spinal interventions: a prospective, randomized, controlled, clinical trial in comparison to conventional freehand puncture. Eur J Radiol 82(4):627–632

    Article  PubMed  Google Scholar 

  31. Myronenko A, Song X (2010) Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  PubMed  Google Scholar 

  32. Nagel M, Hoheisel M, Bill U, Klingenbeck-Regn K, Kalender WA, Petzold R (2008) Electromagnetic tracking system for minimal invasive interventions using a C-arm system with CT option: first clinical results. In: SPIE medical imaging 2008: visualization, image-guided procedures, and modeling

  33. Nicolau S, Brenot J, Goffin L, Graebling P, Soler L, Marescaux J (2008) A structured light system to guide percutaneous punctures in interventional radiology. In: SPIE medical imaging: optical and digital image processing, p 700016

  34. Nicolau SA, Pennec X, Soler L, Buy X, Gangi A, Ayache N, Marescaux J (2009) An augmented reality system for liver thermal ablation: design and evaluation on clinical cases. Med Image Anal 13(3):494–506

    Article  CAS  PubMed  Google Scholar 

  35. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I (2013) The medical imaging interaction toolkit: challenges and advances: 10 years of open-source development. Int J Comput Assist Radiol Surg 8(4):607–620

    Article  PubMed  Google Scholar 

  36. Oliveira-Santos T, Klaeser B, Weitzel T, Krause T, Nolte LP, Peterhans M, Weber S (2011) A navigation system for percutaneous needle interventions based on PET/CT images: design, workflow and error analysis of soft tissue and bone punctures. Comput Aided Surg 16(5):203–219

    Article  PubMed  Google Scholar 

  37. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  38. Phee SJ, Yang K (2010) Interventional navigation systems for treatment of unresectable liver tumor. Med Biol Eng Comput 48(2):103–111

    Article  PubMed  Google Scholar 

  39. Prisacariu VA, Reid ID (2012) PWP3D: real-time segmentation and tracking of 3D objects. Int J Comput Vision 98(3):335–354

    Article  Google Scholar 

  40. Seitel A, Engel M, Sommer CM, Radeleff BA, Essert-Villard C, Baegert C, Fangerau M, Fritzsche KH, Yung K, Meinzer HP, Maier-Hein L (2011) Computer-assisted trajectory planning for percutaneous needle insertions. Med Phys 38(6):3246–3259

    Article  PubMed  Google Scholar 

  41. Seitel A, Yung K, Mersmann S, Kilgus T, Groch A, Santos TRD, Franz AM, Nolden M, Meinzer HP, Maier-Hein L (2011) MITK-ToF range data within MITK. Int J Comput Assist Radiol Surg 7(1):87–96

    Article  PubMed  Google Scholar 

  42. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings of the sixth international conference on computer vision (ICCV). IEEE Computer Society, Washington, DC, p 839

  43. Wasza J, Bauer S, Hornegger J (2012) Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors. In: MICCAI 2012, Part II, lecture notes in computer science, vol 7511, pp 576–583

  44. Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer HP (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604

    Article  PubMed  Google Scholar 

  45. Wood BJ, Kruecker J, Abi-Jaoudeh N, Locklin JK, Levy E, Xu S, Solbiati L, Kapoor A, Amalou H, Venkatesan AM (2010) Navigation systems for ablation. J Vasc Interv Radiol 21(8 Suppl):S257–S263

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted within the settings of Research Training Group 1126: “Intelligent Surgery” funded by the German Research Foundation (DFG) and was partly supported by the DFG grant PD 15577. The authors would further like to thank Martina Jochim from the Department of Radiology at the German Cancer Research Center (DKFZ) for the assistance during the CT acquisitions, Adrian Winterstein for his help during the porcine trial and Christian Stock from the University Hospital Heidelberg for his statistical advise.

Conflict of interest

A. Seitel, N. Bellemann, M. Hafezi, A. Franz, M. Servatius, A. Saffari, T. Kilgus, H.-P. Schlemmer, A. Mehrabi, B. Radeleff and L. Maier-Hein declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Seitel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitel, A., Bellemann, N., Hafezi, M. et al. Towards markerless navigation for percutaneous needle insertions. Int J CARS 11, 107–117 (2016). https://doi.org/10.1007/s11548-015-1156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1156-7

Keywords

Navigation