Skip to main content
Log in

Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The scaphoid bone is the most frequently fractured bone in the wrist. When fracture fixation is indicated, a screw is inserted into the bone either in an open surgical procedure or percutaneously under fluoroscopic guidance. Due to the complex geometry of the wrist, fracture fixation is a challenging task. Fluoroscopic guidance exposes both the patient and the physician to ionizing radiation. Ultrasound-based guidance has been suggested as a real-time, radiation-free alternative. The main challenge of using ultrasound is the difficulty in interpreting the images due to the low contrast and noisy nature of the data.

Methods

We propose a bone enhancement method that exploits local spectrum features of the ultrasound image. These features are utilized to design a set of quadrature band-pass filters and subsequently estimate the local phase symmetry, where high symmetry is expected at the bone locations. We incorporate the shadow information below the bone surfaces to further enhance the bone responses. The extracted bone surfaces are then used to register a statistical wrist model to ultrasound volumes, allowing the localization and interpretation of the scaphoid bone in the volumes.

Results

Feasibility experiments were performed using phantom and in vivo data. For phantoms, we obtain a surface distance error 1.08 mm and an angular deviation from the main axis of the scaphoid bone smaller than \(5^{\circ }\), which are better compared to previously presented approaches.

Conclusion

The results are promising for further development of a surgical guidance system to enable accurate anatomy localization for guiding percutaneous scaphoid fracture fixations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amin DV, Kanade T, Digioia AM, Jaramaz B (2003) Ultrasound registration of the bone surface for surgical navigation. Comput Aided Surg 8(1):1–16

    Article  PubMed  Google Scholar 

  2. Beek M, Abolmaesumi P, Luenam S, Ellis RE, Sellens RW, Pichora DR (2008) Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal 12(2):152–162

    Article  CAS  PubMed  Google Scholar 

  3. Clarke C, Moore J, Wedlake C, Lee D, Ganapathy S, Salbalbal M, Wilson T, Peters T, Bainbridge D (2010) Virtual reality imaging with real-time ultrasound guidance for facet joint injection: a proof of concept. Anesth Analg 110(5):1461–1463

    Article  PubMed  Google Scholar 

  4. Foroughi P, Boctor E, Swartz M (2007) 2-D ultrasound bone segmentation using dynamic programming. In: IEEE ultrasonics symposium, pp 2523–2526

  5. Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61(16):3999–4010

    Article  Google Scholar 

  6. Gilles J, Tran G, Osher S (2014) 2D empirical transforms. wavelets, ridgelets, and curvelets revisited. SIAM J Imaging Sci 7(1):157–186

    Article  Google Scholar 

  7. Grau V, Noble JA (2005) Adaptive multiscale ultrasound compounding using phase information. In: Medical image computing and computer-assisted intervention-MICCAI 2005. Springer, Berlin, pp 589–596

  8. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2009) Bone surface localization in ultrasound using image phase-based features. Ultrasound Med Biol 35(9):1475–1487

    Article  PubMed  Google Scholar 

  9. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN (2011) Automatic adaptive parameterization in local phase feature-based bone segmentation in ultrasound. Ultrasound Med Biol 37(10):1689–1703

    PubMed  Google Scholar 

  10. Hacihaliloglu I, Abugharbieh R, Hodgson AJ, Rohling RN, Guy P (2012) Automatic bone localization and fracture detection from volumetric ultrasound images using 3-D local phase features. Ultrasound Med Biol 38(1):128–144

    Article  PubMed  Google Scholar 

  11. Hacihaliloglu I, Rasoulian A, Rohling RN, Abolmaesumi P (2014) Local phase tensor features for 3D ultrasound to statistical shape+pose spine model registration. IEEE Trans Med Imaging 33(11):2167–2179

    Article  PubMed  Google Scholar 

  12. Jain AK, Taylor RH (2004) Understanding bone responses in B-mode ultrasound images and automatic bone surface extraction using a Bayesian probabilistic framework. In: Medical imaging, international society for optics and photonics, pp 131–142

  13. Khallaghi S, Mousavi P, Gong RH, Gill S, Boisvert J, Fichtinger G, Pichora D, Borschneck D, Abolmaesumi P (2010) Registration of a statistical shape model of the lumbar spine to 3d ultrasound images. In: Medical image computing and computer-assisted intervention-MICCAI 2010. Springer, Berlin, pp 68–75

  14. Kovesi P (1997) Symmetry and asymmetry from local phase. In: Tenth Australian joint conference on artificial intelligence, vol 190. Citeseer

  15. Kowal J, Amstutz C, Langlotz F, Talib H, Ballester MG (2007) Automated bone contour detection in ultrasound b-mode images for minimally invasive registration in computer-assisted surgery—an in vitro evaluation. Int J Med Robot Comput Assist Surg 3(4):341–348

    Article  Google Scholar 

  16. Madsen EL, Hobson MA, Shi H, Varghese T, Frank GR (2005) Tissue-mimicking agar/gelatin materials for use in heterogeneous elastography phantoms. Phys Med Biol 50(23):5597

    Article  PubMed Central  PubMed  Google Scholar 

  17. Maleike D, Nolden M, Meinzer HP, Wolf I (2009) Interactive segmentation framework of the medical imaging interaction toolkit. Comput Methods Program Biomed 96(1):72–83

    Article  CAS  Google Scholar 

  18. Meldon SW, Hargarten SW (1995) Ligamentous injuries of the wrist. J Emerg Med 13(2):217–225

    Article  CAS  PubMed  Google Scholar 

  19. Menapace KA, Larabee L, Arnoczky SP, Neginhal VS, Dass AG, Ross LM (2001) Anatomic placement of the Herbert-Whipple screw in scaphoid fractures: a cadaver study. J Hand Surg 26(5):883–892

    Article  CAS  Google Scholar 

  20. Merrell G, Slade J (2008) Technique for percutaneous fixation of displaced and nondisplaced acute scaphoid fractures and select nonunions. J Hand Surg 33(6):966–973

    Article  Google Scholar 

  21. Mohammad Abu Anas E, Rasoulian A, John PS, Pichora DR, Rohling R, Abolmaesumi P (2014) A statistical shape+pose model for segmentation of wrist CT images. In: SPIE medical imaging, vol 9034, pp T1–T8

  22. Mink van der Molen A, Groothoff J, Visser G, Robinson P, Eisma W (1999) Time off work due to scaphoid fractures and other carpal injuries in The Netherlands in the period 1990 to 1993. J Hand Surg Br Eur Vol 24(2):193–198

    Article  Google Scholar 

  23. Nagpal S, Abolmaesumi P, Rasoulian A, Ungi T, Hacihaliloglu I, Osborn J, Borschneck DP, Lessoway VA, Rohling RN, Mousavi P (2014) CT to US registration of the lumbar spine: a clinical feasibility study. In: Information processing in computer-assisted interventions. Springer, Berlin, pp 108–117

  24. Pao VS, Chang J (2003) Scaphoid nonunion: diagnosis and treatment. Plast Reconstr Surg 112(6):1666–1677

    Article  PubMed  Google Scholar 

  25. Penney GP, Barratt DC, Chan CS, Slomczykowski M, Carter TJ, Edwards PJ, Hawkes DJ (2006) Cadaver validation of intensity-based ultrasound to CT registration. Med Image Anal 10(3):385–395

    Article  CAS  PubMed  Google Scholar 

  26. Rahmatullah B, Papageorghiou AT, Noble JA (2012) Integration of local and global features for anatomical object detection in ultrasound. In: Medical image computing and computer-assisted intervention-MICCAI 2012. Springer, Berlin, pp 402–409

  27. Rajpoot K, Grau V, Noble JA (2009) Local-phase based 3D boundary detection using monogenic signal and its application to real-time 3-D echocardiography images. In: IEEE international symposium on biomedical imaging: from nano to macro, 2009 (ISBI’09). IEEE, pp 783–786

  28. Rasoulian A, Rohling R, Abolmaesumi P (2013) Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans Med Imaging 32(10):1890–1900

    Article  PubMed  Google Scholar 

  29. Smith EJ, Al-Sanawi HA, Gammon B, John PJS, Pichora DR, Ellis RE (2012) Volume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation. Int J Comput Assist Radiol Surg 7(3):433–444

    Article  PubMed  Google Scholar 

  30. Tran D, Rohling RN (2010) Automatic detection of lumbar anatomy in ultrasound images of human subjects. IEEE Trans Biomed Eng 57(9):2248–2256

    Article  PubMed  Google Scholar 

  31. Yan CX, Goulet B, Pelletier J, Chen SJS, Tampieri D, Collins DL (2011) Towards accurate, robust and practical ultrasound-CT registration of vertebrae for image-guided spine surgery. Int J Comput Assist Radiol Surg 6(4):523–537

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emran Mohammad Abu Anas.

Additional information

We would like to thank the Natural Sciences and Engineering Research Council (NSERC) and the Canadian Institutes of Health Research (CIHR) for funding this project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anas, E.M.A., Seitel, A., Rasoulian, A. et al. Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. Int J CARS 10, 959–969 (2015). https://doi.org/10.1007/s11548-015-1181-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1181-6

Keywords

Navigation