Skip to main content
Log in

Towards real-time, tracker-less 3D ultrasound guidance for spine anaesthesia

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Epidural needle insertions and facet joint injections play an important role in spine anaesthesia. The main challenge of safe needle insertion is the deep location of the target, resulting in a narrow and small insertion channel close to sensitive anatomy. Recent approaches utilizing ultrasound (US) as a low-cost and widely available guiding modality are promising but have yet to become routinely used in clinical practice due to the difficulty in interpreting US images, their limited view of the internal anatomy of the spine, and/or inclusion of cost-intensive tracking hardware which impacts the clinical workflow.

Methods

We propose a novel guidance system for spine anaesthesia. An efficient implementation allows us to continuously align and overlay a statistical model of the lumbar spine on the live 3D US stream without making use of additional tracking hardware. The system is evaluated in vivo on 12 volunteers.

Results

The in vivo study showed that the anatomical features of the epidural space and the facet joints could be continuously located, at a volume rate of 0.5 Hz, within an accuracy of 3 and 7 mm, respectively.

Conclusions

A novel guidance system for spine anaesthesia has been presented which augments a live 3D US stream with detailed anatomical information of the spine. Results from an in vivo study indicate that the proposed system has potential for assisting the physician in quickly finding the target structure and planning a safe insertion trajectory in the spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. 3D Slicer, http://www.slicer.org.

  2. PLUS user manual: Volume reconstruction algorithm, http://perk-software.cs.queensu.ca/plus/doc/nightly/user/AlgorithmVolumeReconstruction.html.

  3. Intel Math Kernel Library, https://software.intel.com/en-us/intel-mkl.

  4. The OpenMP API specification for parallel programming, http://openmp.org/wp.

  5. Freehand tracked ultrasound calibration application (fCal), http://perk-software.cs.queensu.ca/plus/doc/nightly/user/ApplicationfCal.html.

  6. vtkTimerLog, http://www.vtk.org/doc/nightly/html/classvtkTimerLog.html.

References

  1. Abdi S, Datta S, Lucas LF (2005) Role of epidural steroids in the management of chronic spinal pain: a systematic review of effectiveness and complications. Pain Physician 8(1):127–143

    PubMed  Google Scholar 

  2. Boswell MV, Colson JD, Sehgal N, Dunbar EE, Epter R (2007) A systematic review of therapeutic facet joint interventions in chronic spinal pain. Pain Physician 10(1):229–253

    PubMed  Google Scholar 

  3. Carvalho JCA (2008) Ultrasound-facilitated epidurals and spinals in obstetrics. Anesthesiol Clin 26(1):145–58

    Article  PubMed  Google Scholar 

  4. Chen ECS, Mousavi P, Gill S, Fichtinger G, Abolmaesumi P (2010) Ultrasound guided spine needle insertion. In: Proceedings of the SPIE, vol 7625, pp 762538-1–762538-8

  5. Chen TK, Thurston AD, Ellis RE, Abolmaesumi P (2009) A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med Biol 35(1):79–93

    Article  PubMed  Google Scholar 

  6. Conroy PH, Luyet C, McCartney CJ, McHardy PG (2013) Real-time ultrasound-guided spinal anaesthesia: a prospective observational study of a new approach. Anesthesiol Res Pract 2013:525,818–525,824

    CAS  Google Scholar 

  7. de Oliveira Filho GR (2002) The construction of learning curves for basic skills in anesthetic procedures: an application for the cumulative sum method. Anesth Analg 95(2):411–416

    PubMed  Google Scholar 

  8. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed Central  PubMed  Google Scholar 

  9. Foroughi P, Boctor E, Swartz M, Taylor R, Fichtinger G (2007) Ultrasound bone segmentation using dynamic programming. IEEE Ultrason Symp 13(4):2523–2526

    Google Scholar 

  10. Greher M, Scharbert G, Kamolz LP, Beck H, Gustorff B, Kirchmair L, Kapral S (2004) Ultrasound-guided lumbar facet nerve block: a sonoanatomic study of a new methodologic approach. Anesthesiology 100(5):1242–1248

    Article  PubMed  Google Scholar 

  11. Hacihaliloglu I, Guy P, Hodgson AJ, Abugharbieh R (2014) Volume-specific parameter optimization of 3D local phase features for improved extraction of bone surfaces in ultrasound. Int J Med Robot Comput Assist Surg. URL: http://dx.doi.org/10.1002/rcs.1552. Published online

  12. Karamalis A, Wein W, Klein T, Navab N (2012) Ultrasound confidence maps using random walks. Med Image Anal 16(6):1101–1112

    Article  PubMed  Google Scholar 

  13. Kerby B, Rohling R, Nair V, Abolmaesumi P (2008) Automatic identification of lumbar level with ultrasound. Conf Proc IEEE Eng Med Biol Soc 2008:2980–2983

    PubMed  Google Scholar 

  14. Khallaghi S, Mousavi P, Gong RH, Gill S, Boisvert J, Fichtinger G, Pichora D, Borschneck D, Abolmaesumi P (2010) Registration of a statistical shape model of the lumbar spine to 3D ultrasound images. In: MICCAI 2010, Part II, vol LNCS 6362, pp 68–75

  15. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537

    Article  PubMed  Google Scholar 

  16. Liu SS, Strodtbeck WM, Richman JM, Wu CL (2005) A comparison of regional versus general anesthesia for ambulatory anesthesia: a meta-analysis of randomized controlled trials. Anesth Analg 101(6):1634–1642

    Article  PubMed  Google Scholar 

  17. Loizides A, Peer S, Plaikner M, Spiss V, Galiano K, Obernauer J, Gruber H (2011) Ultrasound-guided injections in the lumbar spine. Med Ultrason 13(1):54–58

    PubMed  Google Scholar 

  18. Malenfant PA, Gunka V, Beigi P, Rasoulian A, Rohling R, Dube A (2014) Accuracy of 3d ultrasound for identification of epidural needle skin insertion point in parturients; a prospective observational study. In: Society for obstetric anesthesia and perinatology (SOAP) 46th annual meeting. Toronto, ON, Canada, p 308

  19. Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, Peters T (2009) Image guidance for spinal facet injections using tracked ultrasound. In: MICCAI 2009, part I, vol LNCS 5761, pp 516–523

  20. Narouze S, Peng PWH (2010) Ultrasound-guided interventional procedures in pain medicine: a review of anatomy, sonoanatomy, and procedures. Part II: axial structures. Reg Anesth Pain Med 35(4):386–396

    Article  PubMed  Google Scholar 

  21. Niazi AU, Chin KJ, Jin R, Chan VW (2014) Real-time ultrasound-guided spinal anesthesia using the SonixGPS ultrasound guidance system: a feasibility study. Acta Anaesth Scand 58(7):875–881

    Article  CAS  PubMed  Google Scholar 

  22. Nickalls RW, Kokri MS (1986) The width of the posterior epidural space in obstetric patients. Anaesthesia 41(4):432–433

    Article  CAS  PubMed  Google Scholar 

  23. Osterman MJ, Martin JA (2011) Epidural and spinal anesthesia use during labor: 27-state reporting area, 2008. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics. Natl Vital Stat Syst 59(5):1–13

    Google Scholar 

  24. Parr AT, Diwan S, Abdi S (2009) Lumbar interlaminar epidural injections in managing chronic low back and lower extremity pain: a systematic review. Pain Physician 12(1):163–188

    PubMed  Google Scholar 

  25. Pesteie M, Abolmaesumi P, Ashab HAD, Lessoway VA, Massey S, Gunka V, Rohling R (2014) Automatic recognition of the target plane in 3D ultrasound with EpiGuide. In: 7th NCIGT and NIH image guided therapy workshop. Boston, MA, USA

  26. Rahmatullah B, Papageorghiou AT, Noble JA (2012) Integration of local and global features for anatomical object detection in ultrasound. In: MICCAI 2012, Part III, vol LNCS 7512, pp 402–409

  27. Rasoulian A, Rohling R, Abolmaesumi P (2013) Augmentation of paramedian 3D ultrasound images of the spine. In: IPCAI 2013, vol LNCS 7915, pp 51–60

  28. Rubin DI (2007) Epidemiology and risk factors for spine pain. Neurol Clin 25(2):353–371

    Article  PubMed  Google Scholar 

  29. Shaikh F, Brzezinski J, Alexander S, Arzola C, Carvalho JCA, Beyene J, Sung L (2013) Ultrasound imaging for lumbar punctures and epidural catheterisations: systematic review and meta-analysis. The BMJ 346:1720–1731

    Article  Google Scholar 

  30. Sprigge JS, Harper SJ (2008) Accidental dural puncture and post dural puncture headache in obstetric anaesthesia: presentation and management: a 23-year survey in a district general hospital. Anaesthesia 63(1):36–43

    Article  CAS  PubMed  Google Scholar 

  31. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Med Robot 5(4):423–434

    Article  Google Scholar 

  32. Tran D, Kamani AA, Al-Attas E, Lessoway VA, Massey S, Rohling RN (2010) Single-operator real-time ultrasound-guidance to aim and insert a lumbar epidural needle. Can J Anaesth 57(4):313–321

    Article  PubMed  Google Scholar 

  33. Ungi T, Abolmaesumi P, Jalal R, Welch M, Ayukawa I, Nagpal S, Lasso A, Jaeger M, Borschneck DP, Fichtinger G, Mousavi P (2012) Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans Biomed Eng 59(10):2766–2772

    Article  PubMed  Google Scholar 

  34. Yoon S, OBrien S, Tran M (2013) Ultrasound guided spine injections: advancement over fluoroscopic guidance? Curr Phys Med Rehabil Rep 1(2):104–113

    Article  Google Scholar 

  35. Yu S, Tan KK, Sng BL, Li S, Sia ATH (2014) Automatic identification of needle insertion site in epidural anesthesia with a cascading classifier. Ultrasound Med Biol 40(9):1980–1990

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) and in part by the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Brudfors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brudfors, M., Seitel, A., Rasoulian, A. et al. Towards real-time, tracker-less 3D ultrasound guidance for spine anaesthesia. Int J CARS 10, 855–865 (2015). https://doi.org/10.1007/s11548-015-1206-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1206-1

Keywords

Navigation