Skip to main content
Log in

[\({}^{11}\hbox {C}\)]acetate and PET/CT assessment of muscle activation in rat studies

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study is to apply kinetic analysis to investigate exercise-related changes in the metabolism of the skeletal muscle of the rat hindlimb by [\({}^{11}\hbox {C}\)]acetate positron emission tomography and computed tomography (PET/CT).

Methods

Contractions were induced in Wistar rats’ left hindlimb by electrostimulation of the Vastus Lateralis muscle motor point. After 15 min of muscle contractions, [\({}^{11}\hbox {C}\)]acetate was injected and PET/CT of both hindlimbs was acquired. The resting hindlimb was used as a control reference. The kinetic parameters \(K_1\) and \(k_2\) were calculated for the target muscles (exercised and control) and correlated with the corresponding standardized uptake values (SUVs). The ratio between each kinetic parameter values and the SUV extracted for the exercised muscle and the muscle at rest was computed (\(K_1^{Ex}/K_1^{Re},\, k_2^{Ex}/k_2^{Re}\) and \(\hbox {SUV}^{Ex}/\hbox {SUV}^{Re}\), respectively).

Results

Kinetic analysis quantitatively confirmed that net tracer uptake (\(K_1\)) and washout (\(k_2\)) were significantly higher in exercised muscles (\(K_1: \,0.34 \pm 0.12 \hbox { min}^{-1}\) for exercised muscles vs. \(0.18 \pm 0.09\hbox { min}^{-1}\) for resting muscles, \(P=0.01\); \(k_2:\, 0.22 \pm 0.05\hbox { min}^{-1}\) for exercised muscle vs. \(0.14 \pm 0.04 \hbox { min}^{-1}\) for resting muscle, \(P=0.002\)). On the other hand, SUV was not significantly different between active and inactive muscles (\(0.7 \pm 0.2\) for exercised muscles vs. \(0.6 \pm 0.1\) for resting muscles). Linear regression analysis revealed a good correlation (\(R^2=0.75,\, P=0.005\)) between net tracer uptake ratio (\(K_1^{Ex}/K_1^{Re}\)) and the SUV ratio \((\hbox {SUV}^{Ex}/\hbox {SUV}^{Re}\)). A lower correlation was found between the net tracer washout ratio (\(k_2^{Ex}/k_2^{Re}\)) and the SUV ratio (\(R^2=0.37,\, P=0.1\)).

Conclusion

The present study showed that kinetic modelling can detect changes between active and inactive skeletal muscles with a higher sensitivity with respect to the SUV, when performed with [\({}^{11}\hbox {C}\)]acetate PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This approach is generally preferred in patients, because of the invasiveness of arterial sampling. However, these methods may offer limited accuracy, require complex correcting factors and lack the necessary temporal resolution.

  2. Moreover, clinically feasible model-fitting algorithm have recently been applied on whole-body dynamic PET human studies [24]

References

  1. Armbrecht JJ, Buxton DB, Schelbert HR (1990) Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 81:1594–1605

    Article  CAS  PubMed  Google Scholar 

  2. Bentourkia M, Croteau T, Langlois R, Aliaga A, Cadorette J, Benard F, Lesur O, Lecomte R (2002) Cardiac studies in rats with 11C-acetate and PET: a comparison with 13N-ammonia. IEEE Trans Nucl Sci 49:231–238

    Article  Google Scholar 

  3. Boellaard R, Knaapen P, Rijbroek A, Luurtsema GJJ, Lammertsma AA (2005) Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and positron emission tomography. Mol Imaging Biol 7:273–285

    Article  PubMed  Google Scholar 

  4. Buchegger F, Ratib O, Willi JP, Steiner C, Seimbille Y, Zaidi H, Graf V, Peter R, Jung M (2011) [11C]acetate PET/CT visualizes skeletal muscle exercise participation, impaired function, and recovery after hip arthroplasty; first results. Mol Imaging Biol 13:793–799

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buck A, Wolpers HG, Hutchins GD, Savas V, Mangner TJ, Nguyen N, Schwaiger M (1991) Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 32:1950–1957

    CAS  PubMed  Google Scholar 

  6. Convert L, Morin-Brassard G, Cadorette J, Archambault M, Bentourkia M, Lecomte R (2007) A new tool for molecular imaging: the microvolumetric \(\beta \) blood counter. J Nucl Med 48:1197–1206. doi:10.2967/jnumed.107.042606

    Article  CAS  PubMed  Google Scholar 

  7. Convert L, Morin-Brassard G, Cadorette J, Rouleau D, Croteau E, Archambault M, Fontaine R, Lecomte R (2007) A microvolumetric \(\beta \) blood counter for pharmacokinetic PET studies in small animals. IEEE Trans Nucl Sci 54(1):173–180

    Article  CAS  Google Scholar 

  8. Croteau E, Gascon S, Bentourkia M, Langlois R, Rousseau JA, Lecomte R, Bénard F (2012) [11C]acetate rest-stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl Med Biol 39:287–294

    Article  CAS  PubMed  Google Scholar 

  9. Croteau E, Lavallée E, Labbe SM, Hubert L, Pifferi F, Rousseau JA, Cunnane SC, Carpentier AC, Lecomte R, Bénard F (2010) Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18f-fluorodeoxyglucose in brain. Eur J Nucl Med Mol Imaging 37:1539–1550. doi:10.1007/s00259-010-1443-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, Vidal JM, van de Vortenbosch C (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  CAS  PubMed  Google Scholar 

  11. Feng D, Wang Z, Huang S (1993) A study on statistically reliable and computationally efficient algorithms for generating local cerebral blood-flow parametric images with positron emission tomography. IEEE Trans Med Imaging 12:182–188

    Article  CAS  PubMed  Google Scholar 

  12. Germano G, Chen BJ, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME (1992) Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 33(6):613–620

    CAS  PubMed  Google Scholar 

  13. van Hall G, Sacchetti M, Rådegran G (2002) Whole body and leg acetate kinetics at rest, during exercise and recovery in humans. J Physiol 542(1):263–272. doi:10.1113/jphysiol.2001.014340

    Article  PubMed  PubMed Central  Google Scholar 

  14. Herrero P, Kim J, Sharp TL, Engelbach JA, Lewis JS, Gropler RJ, Welch MJ (2006) Assessment of myocardial blood flow using \({}^{15}\text{ O }\)-water and 1-\({}^{11}\text{ C }\)-acetate in rats with small-animal PET. J Nucl Med 47:477–485

    CAS  PubMed  Google Scholar 

  15. van den Hoff J, Burchert W, Börner AR, Fricke H, Kühnel G, Meyer GJ, Otto D, Weckesser E, Wolpers HG, Knapp WH (2001) [1-11C]acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 42:1174–1182

    PubMed  Google Scholar 

  16. van den Hoff J, Burchert W, Müller-Schauenburg W, Meyer GJ, Hundeshagen H (1993) Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 34:1770–1777

    PubMed  Google Scholar 

  17. van den Hoff J, Burchert W, Wolpers HG, Meyer GJ, Hundeshagen H (1996) A kinetic model for cardiac PET with [1-11C]acetate. J Nucl Med 37:521–529

    PubMed  Google Scholar 

  18. Huang SC (2000) Anatomy of SUV. Nucl Med Biol 27:643–646

    Article  CAS  PubMed  Google Scholar 

  19. Huang SC, Wu HM, Shoghi-Jadid K, Stout DB, Chatziioannou A, Schelbert HR, Barrio JR (2004) Investigation of a new input function validation approach for dynamic mouse microPET studies. Mol Imaging Biol 6(1):34–46. doi:10.1016/j.mibio.2003.12.002

    Article  PubMed  Google Scholar 

  20. Ichihara K, Venkatasubramanian G, Abbas JJ, Jung R (2009) Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model. J Neurosci Methods 176:213–224

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K (1986) Error analysis of a quantitative cerebral blood flow measurement using \(\text{ H }_2^{15}\text{ O }\) autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb Blood Flow Metab 6:536–545

    Article  CAS  PubMed  Google Scholar 

  22. Jung R, Belanger A, Kanchiku T, Fairchild M, Abbas JJ (2009) Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion. J Neural Eng 6(055010):1–14. doi:10.1088/1741-2560/6/5/055010

    Google Scholar 

  23. Kanchiku T, Kato Y, Suzuki H, Imajo Y, Yoshida Y, Moriya A, Taguchi T, Jung R (2012) Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents. J Spinal Cord Med 35(3):162–169. doi:10.1179/2045772312Y.0000000009

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karakatsanis NA et al (2013) Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 58:7391–7418

  25. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29(10):1380–1384

    Article  CAS  PubMed  Google Scholar 

  26. Laforest R, Sharp TL, Engelbach JA (2005) Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 32:679–685

    Article  CAS  PubMed  Google Scholar 

  27. Lanz B, Poitry-Yamate C, Gruetter R (2014) Image-derived input function from the Vena Cava for 18F-FDG PET studies in rats and mice. J Nucl Med 55:1–9

    Article  Google Scholar 

  28. Lapointe D, Cadorette J, Rodrigue S, Rouleau D, Lecomte R (1998) A microvolumetric blood counter/sampler for metabolic PET studies in small animals. IEEE Trans Nucl Sci 45(4):2195–2199

    Article  Google Scholar 

  29. Magnenat-Thalmann N, Ratib O, Choi HF (2014) 3D multiscale physiological human. Springer, Berlin

    Book  Google Scholar 

  30. Meyer PT, Circiumaru V, Cardi CA, Thomas DH, Bal H, Acton PD (2006) Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function. Eur J Nucl Med Mol Imaging 33:948–954

    Article  PubMed  Google Scholar 

  31. Ng CK, Huang SC, Schelbert HR, Buxton DB (1994) Validation of a model for [1-11C]acetate as a tracer of cardiac oxidative metabolism. Am J Physiol 266:H1304–H1315

    CAS  PubMed  Google Scholar 

  32. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2):181–186

  33. Pain F, Lanièce P, Mastrippolito R, Gervais P, Hantraye P, Besret L (2004) Arterial input function measurement without blood sampling using a \(\beta \)-microprobe in rats. J Nucl Med 45:1577–1582

    PubMed  Google Scholar 

  34. Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360. doi:10.1146/annurev.bioeng.6.040803.140103

    Article  CAS  PubMed  Google Scholar 

  35. Prasad R, Ratib O, Zaidi H (2010) Performance evaluation of the FLEX Triumph X-PET scanner using the National Electrical Manufacturers Association NU-4 standards. J Nucl Med 51:1608–1615. doi:10.2967/jnumed.110.076125

    Article  PubMed  Google Scholar 

  36. Rosset A, Spadola L, Ratib O (2004) Osirix: an open-source software for navigating in multidimensional dicom images. J Digit Imaging 17(3):205–216

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schiepers C, Hoh CK, Nuyts J, Seltzer M, Wu C, Huang SC, Dahlbom M (2008) 1–11C-acetate kinetics of prostate cancer. J Nucl Med 49:206–215. doi:10.2967/jnumed.107.044453

    Article  CAS  PubMed  Google Scholar 

  38. Shoghi KI, Welch MJ (2007) Hybrid image and blood sampling input function for quantification of small animal dynamic PET data. Nucl Med Biol 34:989–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun KT, Chen K, Huang SC, Buxton DB, Hansen HW, Kim AS, Siegel S, Choi Y, Muller P, Phelps ME, Scheiben HR (1997) Compartment model for measuring myocardial oxygen consumption using [1-11C]acetate. J Nucl Med 38:459–466

    CAS  PubMed  Google Scholar 

  40. Sun KT, Yeatman LA, Buxton DB, Chen K, Johnson JA, Huang SC, Kofoed KF, Weismueller S, Czernin J, Phelps ME, Schelbert HR (1998) Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med 39:272–280

    CAS  PubMed  Google Scholar 

  41. Tantawy MN, Peterson TE (2010) Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Mol Imaging 9(2):76–86

    PubMed  PubMed Central  Google Scholar 

  42. Thota AK, Watson SC, Knapp E, Thompson B, Jung R (2005) Neuromechanical control of locomotion in the rat. J Neurotrauma 25(4):442–465

    Article  Google Scholar 

  43. Vavere AL, Kridel SJ, Wheeler FB, Lewis JS (2008) 1–11C-acetate as a PET radiopharmaceutical for imaging fatty acid synthase expression in prostate cancer. J Nucl Med 49(2):327–334

    Article  CAS  PubMed  Google Scholar 

  44. Warnock G, Bahri MA, Goblet D, Giacomelli F, Lemaire C, Aerts J, Seret A, Langlois X, Luxen A, Plenevaux A (2011) Use of a beta microprobe system to measure arterial input function in PET via arteriovenous shunt in rats. EJNMMI Res 1:13

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Marie-Curie project Multiscale Biological Modalities for Physiological Human Articulation (MSH - Grant Agreement: 289897), and by the Centre for Biomedical Imaging (CIBM), Geneva, CH. Many thanks are due to Prof. Daniel Huber (Huberlab, Department of Fundamental Neurosciences, University Medical Centre (CMU), Geneva, CH) for kindly providing part of the laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Trombella.

Ethics declarations

Conflict of interest

Sara Trombella, David García, Didier J. Colin, Stéphane Germain, Yann Seimbille and Osman Ratib declare no conflicts of interest.

Animal ethical standards

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trombella, S., García, D., Colin, D.J. et al. [\({}^{11}\hbox {C}\)]acetate and PET/CT assessment of muscle activation in rat studies. Int J CARS 11, 733–743 (2016). https://doi.org/10.1007/s11548-015-1260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1260-8

Keywords

Navigation