Skip to main content

Advertisement

Log in

Improving workflows of neuro-interventional procedures with autostereoscopic 3D visualization of multi-modality imaging in hybrid interventional suites

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Recent developments in interventional neuroradiology techniques, medical imaging modalities, endovascular stenting and embolization materials lead to an increasing number of patients with cerebral aneurysms and arteriovenous malformations that are eligible for endovascular treatment and have opened new perspectives for novel ways for patient treatment in general. In this paper, we describe a software tool for 3D image fusion of multi-modal acquisitions to assist endovascular treatment of cerebral malformations. The software and an autostereoscopic 3D display were implemented and tested in clinical applications in a hybrid interventional suite that is used for radio-interventional as well as neurosurgical procedures. Our hypothesis is that fusion of image data acquired prior to intervention procedures with images acquired during those procedures should allow better visualizing and navigating through complex cerebral vasculature. This should also improve workflows of neuro-interventional procedures.

Methods

Preoperative and intra-operative acquisitions of vascular images of the brain were performed and transferred to a dedicated imaging workstation to be processed with our image fusion and visualization software tool. The tool was developed as a plugin extension to the open-source DICOM viewer OsiriX and is based on a modular and scalable architecture. Several processing modules were implemented to allow spatial co-registration and fusion of preoperative and intra-operative modalities. A special extension was also implemented for interactive autostereosopic, glass-free 3D visualization of fused results.

Results

The software platform was validated and evaluated in nine in vivo procedures by expert users. All patient cases were related to interventional treatment of neuro-vascular diseases. The emphasis was laid on the added value of spatial co-registration and fusion of preoperative and intra-operative modalities, as well as the overall impact on workflow during the intervention. The co-registered and fused images were visualized on an autostereoscopic 3D monitor installed in hybrid interventional suite. All experiments were evaluated and scored by interventional physicians and technicians.

Conclusions

Displaying 3D–4D representations of brain vascular anomalies based on multi-modal acquisitions on a 3D autostereoscopic display is beneficial for the workflow and efficiency of interventional radiologists. The implemented software tool fulfills the premise of applicability of an open-source platform for more advanced, multi-modal visualization and processing of brain vascular structures for image-guided therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stapf C, Mast H, Sciacca RR, Berenstein A, Nelson PK, Gobin YP, Pile-Spellman J (2003) Mohr JP (2003) The New York Islands AVM Study: design, study progress, and initial results. Stroke 34:e29–e33

    Article  CAS  PubMed  Google Scholar 

  2. da Costa L, Wallace MC, Ter Brugge KG, O’Kelly C, Willinsky RA, Tymianski M (2009) The natural history and predictive features of hemorrhage from brain arteriovenous malformations. Stroke 22(40):100–105

    Article  Google Scholar 

  3. Maimon S, Strauss I, Frolov V, Margalit N, Ram Z (2010) Brain arteriovenous malformation treatment using a combination of Onyx and a new detachable tip microcatheter, SONIC: short-term results. AJNR Am J Neuroradiol 31:947–954

  4. Saatci I, Geyik S, Yavuz K, Cekirge HS (2011) Endovascular treatment of brain arteriovenous malformations with prolonged intranidal Onyx injection technique: long-term results in consecutive patients with completed endovascular treatment course. J Neurosurg 2011(115):78–88

    Article  Google Scholar 

  5. Yaniv Z, Cleary K (2006) Image-Guided Procedures: A Review. In Technical Report, CAIMR TR-2006-3, April 2006

  6. Banks MS, Read JC, Allison RS, Watt SJ (2012) Stereoscopy and the human visual system. SMPTE Motion Imaging J 121(4):24–43

  7. Rosset A (2014) OsiriX Imaging software. http://www.osirix-viewer.com/, Active link April 2014

  8. Apple (2014) Cocoa Frameworks. https://developer.apple.com/technologies/mac/cocoa.html, Active link October 2014

  9. Kitware (2014) ITK - Segmentation and Registration Toolkit (ITK). http://itk.org/, Active link April 2014

  10. Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661

    Article  CAS  PubMed  Google Scholar 

  11. Alioscopy (2014) Alioscopy \({\vert }\) Glass-free 3D displays. http://www.alioscopy.com, Active link August 2014

  12. Narita Y, Tsukagoshi S, Suzuki M, Miyakita Y, Ohno M, Arita H, Saito Y, Kokojima Y, Watanabe N, Moriyama N, Shibui S (2014) Usefulness of a glass-free medical three-dimensional autostereoscopic display in neurosurgery. Int J Comput Assist Radiol Surg 9(5):905–911

    Article  PubMed  Google Scholar 

  13. Kitware (2014) VTK - Visualization Toolkit (ITK). http://vtk.org/, Active link April 2015

Download references

Acknowledgments

The project “3D 4D Navigation in Neuro-Interventions.” was supported by a grant from: Fondation Artères and A. De Rothschild Mémorial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Perhac.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perhac, J., Spaltenstein, J., Pereira, V.M. et al. Improving workflows of neuro-interventional procedures with autostereoscopic 3D visualization of multi-modality imaging in hybrid interventional suites. Int J CARS 11, 189–196 (2016). https://doi.org/10.1007/s11548-015-1268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1268-0

Keywords

Navigation