Skip to main content

Advertisement

Log in

Laser-assisted flat-detector CT-guided intracranial access

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Flat-detector CT can be integrated with C-arm fluoroscopy for CT-guided neurosurgical and endovascular procedures. We studied the accuracy of this technique with laser assistance in targeting intracranial lesions in a cranial model.

Methods

An acrylic scale-model skull containing foam parenchyma was embedded with 2.16-mm-diameter targets. A flat-detector CT was acquired and registered to the skull’s position. Ten targets were accessed with biopsy needles under fluoroscopic guidance, flat-detector CT overlay, and laser assistance. Accuracy was measured from the needle tip to the target center using flat-detector CT.

Results

Ten targets were accessed successfully using XperGuide software. Needles were placed within 1.30 \(\pm \) 0.63 mm of target isocenter. Accuracy did not vary by entry site, operator, location, or lesion depth.

Conclusions

Laser-assisted flat-detector CT-guided targeting of all intracranial targets was successful with excellent accuracy. This technique can be applied to other minimally invasive neurosurgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braak SJ, van Strijen MJ, van Es HW, Nievelstein RA, van Heesewijk JP (2011) Effective dose during needle interventions: cone-beam CT guidance compared with conventional CT guidance. J Vasc Interv Radiol 22:455–461

    Article  PubMed  Google Scholar 

  2. Brommeland T, Hennig R (2000) A new procedure for frameless computer navigated stereotaxy. Acta Neurochir (Wien) 142:443–447 (discussion 447–448)

    Article  CAS  Google Scholar 

  3. Brommeland T, Hennig R (2000) Mechanical accuracy of a new stereotactic guide. Acta Neurochir (Wien) 142:449–454

    Article  CAS  Google Scholar 

  4. Cooke DL, Levitt M, Kim LJ, Hallam DK, Ghodke B (2010) Intraorbital access using fluoroscopic flat panel detector CT navigation and three-dimensional MRI overlay. J NeuroInterv Surg 2:249–251

    Article  PubMed  Google Scholar 

  5. Cooke DL, Levitt M, Kim LJ, Hallam DK, Ghodke B (2011) Transcranial access using fluoroscopic flat panel detector CT navigation. AJNR Am J Neuroradiol 32:E69–E70

    Article  CAS  PubMed  Google Scholar 

  6. Daly M, Siewerdsen J, Moseley D, Jaffray D, Irish J (2006) Intraoperative cone-beam CT for guidance of head and neck surgery: assessment of dose and image quality using a C-arm prototype. Med Phys 33:3767–3780

    Article  CAS  PubMed  Google Scholar 

  7. Damet J, Sans-Merce M, Miéville F, Becker M, Poletti PA, Verdun FR, Baechler S (2010) Comparison of organ doses and image quality between CT and flat panel XperCT scans in wrist and inner ear examinations. Radiat Prot Dosimetry 139:164–168

    Article  CAS  PubMed  Google Scholar 

  8. Doelken M, Struffert T, Richter G, Engelhorn T, Nimsky C, Ganslandt O, Hammen T, Doerfler A (2008) Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT. Neuroradiology 50:517–523

    Article  CAS  PubMed  Google Scholar 

  9. Heran N, Song J, Namba K, Smith W, Niimi Y, Berenstein A (2006) The utility of DynaCT in neuroendovascular procedures. AJNR Am J Neuroradiol 27:330–332

    CAS  PubMed  Google Scholar 

  10. Kettenbach J, Kara L, Toporek G, Fuerst M, Kronreif G (2014) A robotic needle-positioning and guidance system for CT-guided puncture: Ex vivo results. Minim Invasive Ther Allied Technol 23:271–278

    Article  PubMed  Google Scholar 

  11. Kim I, Son B, Lee S, Sung J, Hong J (2007) Comparison of frame-based and frameless stereotactic hematoma puncture and subsequent fibrinolytic therapy for the treatment of supratentorial deep seated spontaneous intracerebral hemorrhage. Minim Invasive Neurosurg 50:86–90

    Article  PubMed  Google Scholar 

  12. Levitt MR, Vaidya SS, Su DK, Moe KS, Kim LJ, Sekhar LN, Hallam DK, Ghodke BV (2013) The riple-overlay technique for percutaneous diagnosis and treatment of lesions of the head and neck: combined three-dimensional guidance with magnetic resonance imaging, cone-beam computed tomography, and fluoroscopy. World Neurosurg 79:509–514

    Article  PubMed  Google Scholar 

  13. Li Q, Zamorano L, Pandya A, Perez R, Gong J, Diaz F (2002) The application accuracy of the NeuroMate robot-A quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg 7:90–98

    Article  PubMed  Google Scholar 

  14. Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 30:1088–1095

    Article  CAS  PubMed  Google Scholar 

  15. Nesbit GM, Nesbit EG, Hamilton BE (2011) Integrated cone-beam CT and fluoroscopic navigation in treatment of head and neck vascular malformations and tumors. J Neurointerv Surg 3:186–190

    Article  PubMed  Google Scholar 

  16. Nett B, Aagaard-Kienitz B, Serarslan Y, Başkaya M, Chen G (2010) A simple technique for interventional tool placement combining fluoroscopy with interventional computed tomography on a C-arm system. Neurosurgery 67:49–56 (discussion 56–47)

    Article  Google Scholar 

  17. Paleologos T, Dorward N, Wadley J, Thomas D (2014) Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery 49:830–835 (discussion 835–837)

    Google Scholar 

  18. Quiñones-Hinojosa A, Ware M, Sanai N, McDermott M (2006) Assessment of image guided accuracy in a skull model: comparison of frameless stereotaxy techniques vs. frame-based localization. J Neurooncol 76:65–70

    Article  PubMed  Google Scholar 

  19. Racadio J, Babic D, Homan R, Rampton J, Patel M, Johnson N (2007) Live 3D guidance in the interventional radiology suite. AJR Am J Roentgenol 189:W357–W364

    Article  PubMed  Google Scholar 

  20. Ringel F, Ingerl D, Ott S, Meyer B (2009) VarioGuide: a new frameless image-guided stereotactic system–accuracy study and clinical assessment. Neurosurgery 64:365–371 (discussion 371–363)

    PubMed  Google Scholar 

  21. Spelle L, Ruijters D, Babic D, Homan R, Mielekamp P, Guillermic J, Moret J (2009) First clinical experience in applying XperGuide in embolization of jugular paragangliomas by direct intratumoral puncture. Int J Comput Assist Radiol Surg 4:527–533

    Article  PubMed  Google Scholar 

  22. Söderman M, Babic D, Holmin S, Andersson T (2008) Brain imaging with a flat detector C-arm : technique and clinical interest of XperCT. Neuroradiology 50:863–868

    Article  PubMed  Google Scholar 

  23. Tam A, Mohamed A, Pfister M, Chinndurai P, Rohm E, Hall A, Wallace MJ (2010) C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty. Spine (Phila Pa 1976) 35:1095–1099

    Google Scholar 

  24. Wang C, Nguyen G, Toncheva G, Jiang X, Ferrell A, Smith T, Yoshizumi T (2014) Evaluation of patient effective dose of neurovascular imaging protocols for C-arm cone-beam CT. AJR Am J Roentgenol 202:1072–1077

    Article  PubMed  Google Scholar 

  25. Widmann G, Eisner W, Kovacs P, Fiegele T, Ortler M, Lang TB, Stoffner R, Bale R (2008) Accuracy and clinical use of a novel aiming device for frameless stereotactic brain biopsy. Minim Invasive Neurosurg 51:361–369

    Article  CAS  PubMed  Google Scholar 

  26. Widmann G, Stoffner R, Sieb M, Bale R (2009) Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot 5:355–365

    Article  PubMed  Google Scholar 

  27. Willems P, Noordmans H, Ramos L, Taphoorn M, Berkelbach van der Sprenkel J, Viergever M, Tulleken CA (2003) Clinical evaluation of stereotactic brain biopsies with an MKM-mounted instrument holder. Acta Neurochir (Wien) 145:889–897 (discussion 897)

  28. Yang Z, Hong B, Jia Z, Chen J, Ge J, Han J, Beilner J, Zhang Y, Fang Y, Liu J (2014) Treatment of supratentorial spontaneous intracerebral hemorrhage using image-guided minimally invasive surgery: Initial experiences of a flat detector CT-based puncture planning and navigation system in the angiographic suite. AJNR Am J Neuroradiol 35:2170–2175

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Levitt.

Ethics declarations

Funding

This study was not funded by any grant or outside entity.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain patient data.

Additional information

Daniel L. Cooke and Michael R. Levitt contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooke, D.L., Levitt, M.R., Kim, L.J. et al. Laser-assisted flat-detector CT-guided intracranial access. Int J CARS 11, 467–472 (2016). https://doi.org/10.1007/s11548-015-1271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1271-5

Keywords

Navigation