Skip to main content

Advertisement

Log in

A general method for cupping artifact correction of cone-beam breast computed tomography images

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Cone-beam breast computed tomography (CBBCT), a promising breast cancer diagnostic technique, has been under investigation for the past decade. However, owing to scattered radiation and beam hardening, CT numbers are not uniform on CBBCT images. This is known as cupping artifact, and it presents an obstacle for threshold-based volume segmentation. In this study, we proposed a general post-reconstruction method for cupping artifact correction.

Methods

There were four steps in the proposed method. First, three types of local region histogram peaks were calculated: adipose peaks with low CT numbers, glandular peaks with high CT numbers, and unidentified peaks. Second, a linear discriminant analysis classifier, which was trained by identified adipose and glandular peaks, was employed to identify the unidentified peaks as adipose or glandular peaks. Third, adipose background signal profile was fitted according to the adipose peaks using the least squares method. Finally, the adipose background signal profile was subtracted from original image to obtain cupping corrected image

Results

In experimental study, standard deviation of adipose tissue CT numbers was obviously reduced and the CT numbers were more uniform after cupping correction by proposed method; in simulation study, root-mean-square errors were significantly reduced for both symmetric and asymmetric cupping artifacts, indicating that the proposed method was effective to both artifacts.

Conclusions

A general method without a circularly symmetric assumption was proposed to correct cupping artifacts in CBBCT images for breast. It may be properly applied to images of real patient breasts with natural pendent geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Evans WP (2012) Breast cancer screening: successes and challenges. CA Cancer J Clin 62:5–9. doi:10.3322/caac.20137

    Article  PubMed  Google Scholar 

  2. Rim A, Jeffers MC, Fanning A (2008) Trends in breast cancer screening and diagnosis. Clevel Clin J Med 75(1):S2–S9. doi:10.3949/ccjm.75.Suppl_1.S2

  3. Boone JM, Nelson TR, Lindfors KK, Seibert JA (2001) Dedicated breast CT: radiation dose and image quality evaluation. Radiology 221(3):657–667. doi:10.1148/radiol.2213010334

    Article  CAS  PubMed  Google Scholar 

  4. Chen B, Ning R (2002) Cone-beam volume CT breast imaging: feasibility study. Med Phys 29:755–770. doi:10.1118/1.1461843

    Article  PubMed  Google Scholar 

  5. Xing Gong G, Vedula Aruna A, Glick Stephen J (2004) Microcalcification detection using cone-beam CT mammography with a flat-panel imager. Phys Med Biol 49:2183. doi:10.1088/0031-9155/49/11/005

    Article  PubMed  Google Scholar 

  6. Kellner AL, Nelson Thomas R, Cervino Laura I, Boone John M (2007) Simulation of mechanical compression of breast tissue. IEEE Trans Biomed Eng 54:1885–1891. doi:10.1109/TBME.2007.893493

    Article  PubMed  Google Scholar 

  7. Tse Yang Wei, Selin Carkaci, Chen Lingyun, Lai Chao-Jen, Sahin Aysegul, Whitman Gary J, Shaw Chris C (2007) Dedicated cone-beam breast CT: feasibility study with surgical mastectomy specimens. AJR Am J Roentgenol 189:1312–1315. doi:10.2214/AJR.07.2403

    Article  Google Scholar 

  8. Chen Lingyun, Shaw Chris C, Altunbas Mustafa C, Lai Chao-Jen, Liu Xinming, Han Tao, Wang Tianpeng, Yang Wei T, Whitman Gary J (2008) Feasibility of volume-of-interest (VOI) scanning technique in cone beam breast CT–a preliminary study. Med Phys 35:3482–3490. doi:10.1118/1.2948397

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yi Ying, Lai Chao-Jen, Han Tao, Zhong Yuncheng, Shen Youtao, Liu Xinming, Ge Shuaiping, You Zhicheng, Wang Tianpeng, Shaw Chris C (2011) Radiation doses in cone-beam breast computed tomography: a Monte Carlo simulation study. Med Phys 38:589–597. doi:10.1118/1.3521469

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shen Youtao, Yi Ying, Zhong Yuncheng, Lai Chao-Jen, Liu Xinming, You Zhicheng, Ge Shuaiping, Wang Tianpeng, Shaw Chris C (2011) High resolution dual detector volume-of-interest cone beam breast CT–demonstration with a bench top system. Med Phys 38:6429–6442. doi:10.1118/1.3656040

    Article  PubMed  PubMed Central  Google Scholar 

  11. Siewerdsen JH, Jaffray DA (2001) Cone-beam computed tomography with a flat-panel imager: magnitude and effects of X-ray scatter. Med Phys 28:220–231. doi:10.1118/1.1339879

    Article  CAS  PubMed  Google Scholar 

  12. Siewerdsen JH, Moseley DJ, Bakhtiar B, Richard S, Jaffray DA (2004) The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors. Med Phys 31:3506–3520. doi:10.1118/1.1819789

    Article  CAS  PubMed  Google Scholar 

  13. Kwan Alexander L C, Boone John M, Shah Nikula (2005) Evaluation of X-ray scatter properties in a dedicated cone-beam breast CT scanner. Med Phys 32:2967–2975. doi:10.1118/1.1954908

    Article  PubMed  Google Scholar 

  14. Jarry G, Graham SA, Jaffray DA, Moseley DJ, Verhaegen F (2005) Scatter correction for kilovoltage cone-beam computed tomography (CBCT) images using Monte Carlo simulations. Proc SPIE 6142:614254. doi:10.1117/12.653803

  15. Rinkel Jean, Gerfault Laurent, Esteve Francois, Dinten Jean-Marc (2006) Evaluation of a physical based approach of scattered radiation correction in cone beam CT with an anthropomorphic thorax phantom. Proc SPIE 6142:61421B. doi:10.1117/12.650089

  16. Cai Weixing, Ning Ruola, Conover David (2011) Scatter correction for clinical cone beam CT breast imaging based on breast phantom studies. J Xray Sci Technol 19:91–109. doi:10.3233/XST-2010-0280

  17. Chen Yu, Bob Liu J, O’Connor Michael, Didier Clay S, Glick Stephen J (2009) Characterization of scatter in cone-beam CT breast imaging: comparison of experimental measurements and Monte Carlo simulation. Med Phys 36:857–869. doi:10.1118/1.3077122

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang Jing, Mao Weihua, Solberg Timothy (2010) Scatter correction for cone-beam computed tomography using moving blocker strips: a preliminary study. Med Phys 37:5792–5800. doi:10.1118/1.3495819

    Article  PubMed  Google Scholar 

  19. Siewerdsen JH, Daly MJ, Bakhtiar B, Moseley DJ, Richard S, Keller H, Jaffray DA (2006) A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 33:187–197. doi:10.1118/1.2148916

    Article  CAS  PubMed  Google Scholar 

  20. Yang Kai, Jr George Burkett, Boone John M (2014) A breast-specific, negligible-dose scatter correction technique for dedicated con-bream breast CT: a physics-based approach to improve Hounsfield Unit accuracy. Phys Med Biol 59:6487–6505. doi:10.1088/0031-9155/59/21/6487

    Article  PubMed  Google Scholar 

  21. Yang Xiaofeng, Shengyong Wu, Sechopoulos Ioannis, Fei Baowei (2012) Cupping artifact correction and automated classification for high-resolution dedicated breast CT images. Med Phys 39:6397–6406. doi:10.1118/1.4754654

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manjon Jose V, Lull Juan J, Carbonell-Caballero Jose, Garcia-Marti Gracian, Marti-Bonmati Luis, Robles Montserrat (2007) A nonparametric MRI inhomogeneity correction method. Med Image Anal 11:336–345. doi:10.1016/j.media.2007.03.001

    Article  PubMed  Google Scholar 

  23. Altunbas MC, Shaw CC, Chen L, Lai C, Liu X, Han T, Wang T (2007) A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography. Med Phys 34:3109–3118. doi:10.1118/1.2748106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han T (2010) Image segmentation, modeling, and simulation in 3D breast X-ray imaging. Dissertation. University of Houston

  25. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612–619. doi:10.1364/JOSAA.1.000612

    Article  Google Scholar 

  26. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  27. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23:228–233. doi:10.1109/34.908974

    Article  Google Scholar 

  28. O’Connor JM, Das M, Dider CS, Mahd M, Glick SJ (2013) Generation of voxelized breast phantoms from surgical mastectomy specimens. Med Phys 40:041915. doi:10.1118/1.4795758

    Article  PubMed  Google Scholar 

  29. Pope TL Jr, Read ME, Medsker T, Buschi AJ, Brenbridge AN (1984) Breast skin thickness: normal range and causes of thickening shown on film-screen mammography. J Can Assoc Radiol 35:365–368

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by research grants (CA104759, CA135802, and CA124585) from the National Institutes of Health (NIH) National Cancer Institute. Xiaolei Qu is grateful for financial support of Translational Systems Biology and Medicine Initiative from Ministry of Education, Culture, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris C. Shaw.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was founded by research grants (CA104759, CA135802, and CA124585) from the National Institutes of Health (NIH) National Cancer Institute. And the article is retrospective study, for this type of study formal consent is not required. Additionally, this article does not contain patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, X., Lai, CJ., Zhong, Y. et al. A general method for cupping artifact correction of cone-beam breast computed tomography images. Int J CARS 11, 1233–1246 (2016). https://doi.org/10.1007/s11548-015-1317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1317-8

Keywords

Navigation