Skip to main content
Log in

Design of a haptic device with grasp and push–pull force feedback for a master–slave surgical robot

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

We propose a portable haptic device providing grasp (kinesthetic) and push–pull (cutaneous) sensations for optical-motion-capture master interfaces.

Methods

Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator’s hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push–pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master–slave system.

Results

The results demonstrate that both the grasp force feedback and the push–pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master–slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation.

Conclusions

We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push–pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master–slave robot system with our haptic interface in surgical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mendivil A, Holloway RW, Boggess JF (2009) Emergence of robotic assisted surgery in gynecologic oncology: American perspective. Gynecol Oncol 114(2):S24–S31

    Article  PubMed  Google Scholar 

  2. Pisla D, Gherman B, Vaida C, Suciu M, Plitea N (2013) An active hybrid parallel robot for minimally invasive surgery Robot. Com-Int Manuf 29(4):203–221

    Article  Google Scholar 

  3. Barbosa JABA, Barayan G, Gridley CM, Sanchez DCJ, Passerotti CC, Houck CS, Nguyen HT (2013) Parent and patient perceptions of robotic vs open urological surgery scars in children. J Urol 190(1):244–250

    Article  PubMed  Google Scholar 

  4. Lavie O, Nezhat FR, Unal E, Liedstrand B, Nezhat C, Nezhat CH (2008) Robot-assisted laparoscopic surgery in gynecology: scientific dream or reality? J Minim Invasive Gynecol 15(6):20S

    Article  Google Scholar 

  5. Fine HF, Wei W, Goldman RE, Simaan N (2010) Robot-assisted ophthalmic surgery. Can J Ophthalmol 45(6):581–584

    Article  PubMed  Google Scholar 

  6. Konietschke R, Hagn U, Nickl M, Jorg S, Tobergte A, Passig G, Seibold U, Le-Tien L, Kubler B, Groger M, Frohlich F, Rink C, Albu-Schaffer A, Grebenstein M, Ortmaier T, Hirzinger G (2009) The DLR MiroSurge—a robotic system for surgery. In: IEEE international conference on robotics and automation, pp 1589–1590

  7. Camarillo DB, Krummel TM, Salisbury JK Jr (2004) Robotic technology in surgery: past, present, and future. Am J Surg 188(4):2–15

    Article  Google Scholar 

  8. Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK (2014) Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Program Biomed 116(2):68–80

    Article  Google Scholar 

  9. Park SB, Yoon CH, Jang IG, Kang HS, Jo YH (2013) A small scale optical non-restraint master interface for the minimally invasive surgical robot. In: Asian conference on computer aided surgery, pp 64–65

  10. Hayward V, Astley OR, Cruz-Hernandez M, Grant D, Robles-De-La-Torre G (2004) Haptic interfaces and devices. Sens Rev 24(1):16–29

    Article  Google Scholar 

  11. Kálmán M, Csillag A (2005) The skin and other diffuse sensory systems. Atlas Sens Organs 5:199–243

    Article  Google Scholar 

  12. Birznieks I, Jenmalm P, Goodwin AW, Johansson RS (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21(20):8222–8237

  13. Burdea G, Zhuang J, Roskos E, Silver D, Langrana N (1992) A portable dextrous master with force feedback. Presence Teleoper Virtual Environ 1(1):18–28

    Article  Google Scholar 

  14. Schostek S, Schurr MO, Buess GF (2009) Review on aspects of artificial tactile feedback in laparoscopic surgery. Med Eng Phys 31(8):887–898

    Article  PubMed  Google Scholar 

  15. Eltaib MEH, Hewit JR (2003) Tactile sensing technology for minimal access surgery—a review. Mechatronics 13(10):1163–1177

    Article  Google Scholar 

  16. Díaz I, Gil JJ, Louredo M (2014) A haptic pedal for surgery assistance. Comput Methods Program Biomed 116(2):97–104

    Article  Google Scholar 

  17. King CH, Culjat MO, Franco ML, Bisley JW, Dutson E, Grundfest WS (2008) Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. IEEE Trans Bio-Med Eng 55(11):2593–2600

    Article  Google Scholar 

  18. Wagner CR, Lederman SJ, Howe RD (2002) A tactile shape display using RC servomotors. In: Proceedings 10th symposium on haptic interfaces for virtual environment and teleoperator systems, pp 354–355

  19. Ottermo MV, Stavdahl O, Johansen TA (2005) Electromechanical design of a miniature tactile shape display for minimally invasive surgery. In: Eurohaptics conference, pp 561–562

  20. Pacchierotti C, Chinello F, Malvezzi M, Meli L, Prattichizzo D (2012) Two finger grasping simulation with cutaneous and kinesthetic force feedback. In: Isokoski P, Springare J (eds) Haptics: perception, devices, mobility, and communication. Springer, Berlin, pp 373–382

  21. Chinello F, Malvezzi M, Pacchierotti C, Prattichizzo D (2012) A three DoFs wearable tactile display for exploration and manipulation of virtual objects. In: IEEE haptics symposium, pp 71–76

  22. Solazzi M, Frisoli A, Bergamasco M (2010) Design of a cutaneous fingertip display for improving haptic exploration of virtual objects. In: 19th IEEE international symposium on robot and human interactive communication, pp 1–6

  23. Prattichizzo D, Pacchierotti C, Rosati G (2012) Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans Haptics 5(4):289–300

    Article  CAS  PubMed  Google Scholar 

  24. Minamizawa K, Kajimoto H, Kawakami N, Tachi S (2007) A wearable haptic display to present the gravity sensation—preliminary observations and device design. In: EuroHaptics conference, pp 133–138

  25. Schiele A, Letier P, van der Linde R, Van der Helm F (2006) Bowden cable actuator for force-feedback exoskeletons. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3599–3604

  26. Hong MB, Jo YH (2012) Design and evaluation of 2-DOFs force sensing forceps with force-sensing capability for minimally invasive robot surgery. IEEE Trans Robot 28(4):932–941

    Article  Google Scholar 

  27. Kwon DS, Woo KY, Song SK, Kim WS, Cho HS (1998) Microsurgical telerobot system. In: Proceedings IEEE/RSJ international conference intell. robot. syst., pp 945–950

  28. Okamura AM (2004) Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Robot 31:499–508

    Article  Google Scholar 

  29. Ottermo MV, Stavdahl O, Johansen TA (2009) A remote palpation instrument for laparoscopic surgery: design and performance. Minim Invasive Therapy 18:259–272

    Article  Google Scholar 

  30. Meli L, Pacchierotti C, Prattichizzo D (2014) Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction. IEEE Trans Bio-med Eng 61(4):1318–1327

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Cancer Center Grant (NCC-1310290, NCC-1410580).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Ho Jo.

Ethics declarations

Conflict of interest

Zhenkai Hu, Chae-Hyun Yoon, Samuel B. Park, and Yung-Ho Jo declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 4208 KB)

Supplementary material 2 (wmv 4380 KB)

Supplementary material 3 (wmv 12017 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Yoon, CH., Park, S.B. et al. Design of a haptic device with grasp and push–pull force feedback for a master–slave surgical robot. Int J CARS 11, 1361–1369 (2016). https://doi.org/10.1007/s11548-015-1324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-015-1324-9

Keywords

Navigation