Abstract
Purpose
Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework.
Methods
The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images.
Results
The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm.
Conclusion
The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.








Similar content being viewed by others
Notes
The distance between the closest elements of the clusters.
We assumed that the projection of spherical marker is circular, and the same circular template, sampled at the resolution of the X-ray image, is used to detect markers across the entire 2D gradient direction image. In general, the projections of ball-shaped objects are not circular but rather elliptic, the more eccentric the further away they lie from the projection axis. Under our C-arm projection geometry, the ratio of major and minor marker semi-axes was always less than 1.037, which is negligible and did not have an impact on marker localization.
In all 3D and 2D the images, the fiducial markers were masked and cubic spline interpolation was used to impaint new intensity values. Hence, markers are not visible and thus cannot bias the registration.
References
Al-Sharadqah A, Chernov N (2009) Error analysis for circle fitting algorithms. Electron J Stat 3:886–911. doi:10.1214/09-EJS419
Atherton TJ, Kerbyson DJ (1999) Size invariant circle detection. Image Vis Comput 17(11):795–803
Baka N, Metz CT, Schultz CJ, van Geuns RJ, Niessen WJ, van Walsum T (2014) Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration. IEEE Trans Med Imaging 33(5):1023–1034. doi:10.1109/TMI.2014.2300117
Bose CB, Amir I (1990) Design of fiducials for accurate registration using machine vision. IEEE Trans Pattern Anal 12(12):1196–1200. doi:10.1109/34.62609
Brandenberger D, Birkfellner W, Baumann B, Messmer P, Huegli RW, Regazzoni P, Jacob AL (2007) Positioning accuracy in a registration-free CT-based navigation system. Phys Med Biol 52(23):7073
Chauris H, Karoui I, Garreau P, Wackernagel H, Craneguy P, Bertino L (2011) The circlet transform: a robust tool for detecting features with circular shapes. Comput Geosci 37(3):331–342. doi:10.1016/j.cageo.2010.05.009
Chen K, Wu J (2014) One-dimensional voting scheme for circle and arc detection. J Opt Soc Am A 31(12):2593. doi:10.1364/JOSAA.31.002593
Dang H, Otake Y, Schafer S, Stayman JW, Kleinszig G, Siewerdsen JH (2012) Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance. Med Phys 39(10):6484. doi:10.1118/1.4754589
Demirci S, Baust M, Kutter O, Manstad-Hulaas F, Eckstein HH, Navab N (2013) Disocclusion-based 2D–3D registration for aortic interventions. Comput Biol Med 43(4):312–322
Dumay A, Reiber J, Gerbrands J (1994) Determination of optimal angiographic viewing angles: basic principles and evaluation study. IEEE Trans Med Imaging 13(1):13–24. doi:10.1109/42.276141
Fattori G, Riboldi M, Desplanques M, Tagaste B, Pella A, Orecchia R, Baroni G (2012) Automated fiducial localization in CT images based on surface processing and geometrical prior knowledge for radiotherapy applications. IEEE Trans Bio-Med Eng 59(8):2191–2199. doi:10.1109/TBME.2012.2198822
Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702
Fledelius W, Worm E, Elstrøm UV, Petersen JB, Grau C, Høyer M, Poulsen PR (2011) Robust automatic segmentation of multiple implanted cylindrical gold fiducial markers in cone-beam CT projections. Med Phys 38(12):6351–6361
Granger S, Pennec X (2006) Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Computer vision—ECCV 2002, pp 69–73
Hamming NM, Daly MJ, Irish JC, Siewerdsen JH (2009) Automatic image-to-world registration based on X-ray projections in cone-beam CT-guided interventions. Med Phys 36(5):1800–1812
Jacob AL, Regazzoni P, Bilecen D, Rasmus M, Huegli RW, Messmer P (2007) Medical technology integration: CT, angiography, imaging-capable OR-table, navigation and robotics in a multifunctional sterile suite. Minim Invasive Ther Allied Technol 16(4):205–211. doi:10.1080/13645700701520628
Jannin P, Fitzpatrick J, Hawkes D, Pennec X, Shahidl R, Vannier M (2002) Validation of medical image processing in image-guided therapy. IEEE Trans Med Imaging 21(12):1445–1449. doi:10.1109/TMI.2002.806568
Jennings AL, Black J, Allen C (2013) Empirically bounding of space booms with tape spring hinges. Shock Vib 20(3):503–517
Madan H, Likar B, Pernuš F, Špiclin Ž (2015) Device and methods for ”gold standard” registration of clinical 3D and 2D cerebral angiograms. In: SPIE medical imaging, p 94151G. doi:10.1117/12.2081908
Maintz JBA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36. doi:10.1016/S1361-8415(01)80026-8
Mao W, Wiersma RD, Xing L (2008) Fast internal marker tracking algorithm for onboard MV and kV imaging systems. Med Phys 35(5):1942. doi:10.1118/1.2905225
Markelj P, Likar B, Pernuš F (2010) Standardized evaluation methodology for 3D/2D registration based on the Visible Human data set. Med Phys 37(9):4643. doi:10.1118/1.3476414
Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661. doi:10.1016/j.media.2010.03.005
Mertzanidou T, Hipwell J, Johnsen S, Han L, Eiben B, Taylor Z, Ourselin S, Huisman H, Mann R, Bick U et al (2014) MRI to X-ray mammography intensity-based registration with simultaneous optimisation of pose and biomechanical transformation parameters. Med Image Anal 18(4):674–683
Miquel ME, Rhode KS, Acher PL, MacDougall ND, Blackall J, Gaston RP, Hegde S, Morris SL, Beaney R, Deehan C et al (2006) Using combined X-ray and MR imaging for prostate I-125 post-implant dosimetry: phantom validation and preliminary patient work. Phys Med Biol 51(5):1129
Mitrovic U, Spiclin Z, Likar B, Pernus F (2013) 3D–2D Registration of cerebral angiograms: a method and evaluation on clinical images. IEEE Trans Med Imaging 32(8):1550–1563. doi:10.1109/TMI.2013.2259844
Mitschke M, Navab N (2003) Recovering the X-ray projection geometry for three-dimensional tomographic reconstruction with additional sensors: attached camera versus external navigation system. Med Image Anal 7(1):65–78
Muenzing SEA, van Ginneken B, Pluim JPW (2010) Knowledge driven regularization of the deformation field for PDE based non-rigid registration algorithms. Medical image analysis for the clinic-a grand challenge, pp 127–136
Myronenko A, Song X (2010) Point set registration: Coherent point drift. IEEE Trans Pattern Anal 32(12):2262–2275. doi:10.1109/TPAMI.2010.46
Navab N, Heining SM, Traub J (2010) Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging 29(7):1412–1423
Ni J, Singh M, Bahlmann C (2012) Fast radial symmetry detection under affine transformations. In: Proceedings of the CVPR IEEE, pp 932–939. doi:10.1109/CVPR.2012.6247768
Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27
Pawiro SA, Markelj P, Pernuš F, Gendrin C, Figl M, Weber C, Kainberger F, Nöbauer-Huhmann I, Bergmeister H, Stock M, Georg D, Bergmann H, Birkfellner W (2011) Validation for 2D/3D registration I: a new gold standard data set. Med Phys 38(3):1481. doi:10.1118/1.3553402
Peters T, Cleary K (2008) Image-guided interventions: technology and applications. Springer, Berlin
Poulsen PR, Fledelius W, Keall PJ, Weiss E, Lu J, Brackbill E, Hugo GD (2011) A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections. Med Phys 38(4):2151. doi:10.1118/1.3555295
Powell MJ (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):155–162
Shechter G, Shechter B, Resar J, Beyar R (2005) Prospective motion correction of X-ray images for coronary interventions. IEEE Trans Med Imaging 24(4):441–450. doi:10.1109/TMI.2004.839679
Siebold MA, Dillon NP, Webster RJ, Fitzpatrick JM (2015) Incorporating target registration error into robotic bone milling. In: SPIE medical imaging, international society for optics and photonics, pp 94,150R–94,150R
Tomaževič D, Likar B, Pernuš F (2004) “Gold standard” data for evaluation and comparison of 3D/2D registration methods. Comput Aided Surg 9(4):137–144
van de Kraats E, Penney G, Tomazevic D, Van Walsum T, Niessen W (2005) Standardized evaluation methodology for 2-D–3-D registration. IEEE Trans Med Imaging 24(9):1177–1189. doi:10.1109/TMI.2005.853240
Varnavas A, Carrell T, Penney G (2013) Increasing the automation of a 2D–3D registration system. IEEE Trans Med Imaging 32(2):387–399
Vermandel M, Betrouni N, Gauvrit JY, Pasquier D, Vasseur C, Rousseau J (2006) Intrinsic 2D/3D registration based on a hybrid approach: use in the radiosurgical imaging process. Cell Mol Biol 52(6):44–53
Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244. doi:10.1080/01621459.1963.10500845
Yaniv Z (2009) Localizing spherical fiducials in C-arm based cone-beam CT. Med Phys 36(11):4957–4966
Funding
This research was supported by Slovenian Research Agency (Grants Nos. J2-5473 and P2-0232).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
For this type of study, formal consent is not required.
Rights and permissions
About this article
Cite this article
Madan, H., Pernuš, F., Likar, B. et al. A framework for automatic creation of gold-standard rigid 3D–2D registration datasets. Int J CARS 12, 263–275 (2017). https://doi.org/10.1007/s11548-016-1482-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-016-1482-4