Skip to main content
Log in

Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity.

Methods

Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference).

Results

The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent.

Conclusions

Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152(5 Pt 2):S77–S121

  2. Stoel BC, Stolk J (2004) Optimization and standardization of lung densitometry in the assessment of pulmonary emphysema. Investig Radiol 39(11):681–688

    Article  Google Scholar 

  3. Madani A, Zanen J, de Maertelaer V, Gevenois PA (2006) Pulmonary emphysema: objective quantification at multi-detector row CT-comparison with macroscopic and microscopic morphometry. Radiology 238(3):1036–1043. doi:10.1148/radiol.2382042196

    Article  PubMed  Google Scholar 

  4. Gevenois PA, de Maertelaer V, De Vuyst P, Zanen J, Yernault JC (1995) Comparison of computed density and macroscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 152(2):653–657. doi:10.1164/ajrccm.152.2.7633722

    Article  CAS  PubMed  Google Scholar 

  5. Gevenois PA, De Vuyst P, de Maertelaer V, Zanen J, Jacobovitz D, Cosio MG, Yernault JC (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154(1):187–192. doi:10.1164/ajrccm.154.1.8680679

    Article  CAS  PubMed  Google Scholar 

  6. Gould GA, MacNee W, McLean A, Warren PM, Redpath A, Best JJ, Lamb D, Flenley DC (1988) CT measurements of lung density in life can quantitate distal airspace enlargement—an essential defining feature of human emphysema. Am Rev Respir Dis 137(2):380–392. doi:10.1164/ajrccm/137.2.380

    Article  CAS  PubMed  Google Scholar 

  7. Blechschmidt RA, Werthschutzky R, Lorcher U (2001) Automated CT image evaluation of the lung: a morphology-based concept. IEEE Trans Med Imaging 20(5):434–442. doi:10.1109/42.925296

    Article  CAS  PubMed  Google Scholar 

  8. Coxson HO, Rogers RM, Whittall KP, D’Yachkova Y, Pare PD, Sciurba FC, Hogg JC (1999) A quantification of the lung surface area in emphysema using computed tomography. Am J Respir Crit Care Med 159(3):851–856. doi:10.1164/ajrccm.159.3.9805067

    Article  CAS  PubMed  Google Scholar 

  9. Uppaluri R, Mitsa T, Sonka M, Hoffman EA, McLennan G (1997) Quantification of pulmonary emphysema from lung computed tomography images. Am J Respir Crit Care Med 156(1):248–254. doi:10.1164/ajrccm.156.1.9606093

    Article  CAS  PubMed  Google Scholar 

  10. Mishima M, Hirai T, Itoh H, Nakano Y, Sakai H, Muro S, Nishimura K, Oku Y, Chin K, Ohi M, Nakamura T, Bates JH, Alencar AM, Suki B (1999) Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 96(16):8829–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Madani A, Van Muylem A, de Maertelaer V, Zanen J, Gevenois PA (2008) Pulmonary emphysema: size distribution of emphysematous spaces on multidetector CT images—comparison with macroscopic and microscopic morphometry. Radiology 248(3):1036–1041. doi:10.1148/radiol.2483071434

    Article  PubMed  Google Scholar 

  12. Snider GL, Kleinerman J, Thurlbeck WM, Bengali ZH (1985) The definition of emphysema. Report of a national heart, lung, and blood institute, division of lung diseases workshop. Am Rev Respir Dis 132(1):182–185. doi:10.1164/arrd.1985.132.1.182

    Google Scholar 

  13. Suki B, Lutchen KR, Ingenito EP (2003) On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med 168(5):516–521. doi:10.1164/rccm.200208-908PP

    Article  PubMed  Google Scholar 

  14. Diciotti S, Nobis A, Ciulli S, Landini N, Mascalchi M, Sverzellati N, Innocenti B (2015) Development and analysis of a finite element model to simulate pulmonary emphysema in CT imaging. Conf Proc IEEE Eng Med Biol Soc 2015:6370–6373. doi:10.1109/EMBC.2015.7319850

    PubMed  Google Scholar 

  15. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, Oxford

    Google Scholar 

  16. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  17. Werner R, Ehrhardt J, Schmidt R, Handels H (2009) Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Med Phys 36(5):1500–1511. doi:10.1118/1.3101820

    Article  PubMed  Google Scholar 

  18. Zhang T, Orton NP, Mackie TR, Paliwal BR (2004) Technical note: a novel boundary condition using contact elements for finite element based deformable image registration. Med Phys 31(9):2412–2415. doi:10.1118/1.1774131

    Article  PubMed  Google Scholar 

  19. Brock KK, Sharpe MB, Dawson LA, Kim SM, Jaffray DA (2005) Accuracy of finite element model-based multi-organ deformable image registration. Med Phys 32(6):1647–1659. doi:10.1118/1.1915012

    Article  Google Scholar 

  20. Suki B, Ito S, Stamenovic D, Lutchen KR, Ingenito EP (2005) Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol (1985) 98(5):1892–1899. doi:10.1152/japplphysiol.01087.2004

    Article  Google Scholar 

  21. Tawhai MH, Nash MP, Lin CL, Hoffman EA (2009) Supine and prone differences in regional lung density and pleural pressure gradients in the human lung with constant shape. J Appl Physiol (1985) 107(3):912–920. doi:10.1152/japplphysiol.00324.2009

    Article  Google Scholar 

  22. Fung Y (1993) Biomechanics: mechanical properties of living tissue, vol 98. Springer, New York

    Book  Google Scholar 

  23. Owen MR, Lewis MA (2001) The mechanics of lung tissue under high-frequency ventilation. SIAM J Appl Math 61(5):1731–1761

    Article  Google Scholar 

  24. Villard P-F, Beuve M, Shariat B, Baudet V, Jaillet F (2005) Simulation of lung behaviour with finite elements: influence of bio-mechanical parameters. In: Paper presented at the proceedings of the third international conference on medical information visualisation–biomedical visualisation

  25. Fischer BM, Pavlisko E, Voynow JA (2011) Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chronic Obstr Pulm Dis 6:413–421. doi:10.2147/COPD.S10770

    Article  CAS  Google Scholar 

  26. Gefen A, Elad D, Shiner RJ (1999) Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs. J Biomech 32(9):891–897

    Article  CAS  PubMed  Google Scholar 

  27. Kononov S, Brewer K, Sakai H, Cavalcante FS, Sabayanagam CR, Ingenito EP, Suki B (2001) Roles of mechanical forces and collagen failure in the development of elastase-induced emphysema. Am J Respir Crit Care Med 164(10 Pt 1):1920–1926. doi:10.1164/ajrccm.164.10.2101083

    Article  CAS  PubMed  Google Scholar 

  28. Napadow VJ, Mai V, Bankier A, Gilbert RJ, Edelman R, Chen Q (2001) Determination of regional pulmonary parenchymal strain during normal respiration using spin inversion tagged magnetization MRI. J Magn Reson Imaging 13(3):467–474

    Article  CAS  PubMed  Google Scholar 

  29. Cavalcante FS, Ito S, Brewer K, Sakai H, Alencar AM, Almeida MP, Andrade JS Jr, Majumdar A, Ingenito EP, Suki B (2005) Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J Appl Physiol (1985) 98(2):672–679. doi:10.1152/japplphysiol.00619.2004

    Article  CAS  Google Scholar 

  30. Bates JH, Davis GS, Majumdar A, Butnor KJ, Suki B (2007) Linking parenchymal disease progression to changes in lung mechanical function by percolation. Am J Respir Crit Care Med 176(6):617–623. doi:10.1164/rccm.200611-1739OC

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mascalchi M, Sverzellati N, Falchini M, Favilli G, Lombardo S, Macconi L, Paci E, Pegna AL, Falaschi F, Zompatori M, Diciotti S (2012) Changes in volume-corrected whole-lung density in smokers and former smokers during the ITALUNG screening trial. J Thorac Imaging 27(4):255–262. doi:10.1097/RTI.0b013e3182541165

  32. Hersh CP, Washko GR, Jacobson FL, Gill R, Estepar RS, Reilly JJ, Silverman EK (2007) Interobserver variability in the determination of upper lobe-predominant emphysema. Chest 131(2):424–431. doi:10.1378/chest.06-1040

    Article  PubMed  Google Scholar 

  33. Kemerink GJ, Kruize HH, Lamers RJ, van Engelshoven JM (1996) Density resolution in quantitative computed tomography of foam and lung. Med Phys 23(10):1697–1708. doi:10.1118/1.597757

    Article  CAS  PubMed  Google Scholar 

  34. Tanabe N, Muro S, Sato S, Tanaka S, Oguma T, Kiyokawa H, Takahashi T, Kinose D, Hoshino Y, Kubo T, Hirai T, Mishima M (2012) Longitudinal study of spatially heterogeneous emphysema progression in current smokers with chronic obstructive pulmonary disease. PLoS ONE 7(9):e44993. doi:10.1371/journal.pone.0044993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of Health, by Tuscany Region (Italy) (RF-2010-2321362) and by Ente Cassa di Risparmio di Firenze (2013.0464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Diciotti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants (ITALUNG study) were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the ITALUNG study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diciotti, S., Nobis, A., Ciulli, S. et al. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification. Int J CARS 12, 1561–1570 (2017). https://doi.org/10.1007/s11548-016-1500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1500-6

Keywords

Navigation