Skip to main content

Advertisement

Log in

Inferior vena cava segmentation with parameter propagation and graph cut

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The inferior vena cava (IVC) is one of the vital veins inside the human body. Accurate segmentation of the IVC from contrast-enhanced CT images is of great importance. This extraction not only helps the physician understand its quantitative features such as blood flow and volume, but also it is helpful during the hepatic preoperative planning. However, manual delineation of the IVC is time-consuming and poorly reproducible.

Methods

In this paper, we propose a novel method to segment the IVC with minimal user interaction. The proposed method performs the segmentation block by block between user-specified beginning and end masks. At each stage, the proposed method builds the segmentation model based on information from image regional appearances, image boundaries, and a prior shape. The intensity range and the prior shape for this segmentation model are estimated based on the segmentation result from the last block, or from user- specified beginning mask if at first stage. Then, the proposed method minimizes the energy function and generates the segmentation result for current block using graph cut. Finally, a backward tracking step from the end of the IVC is performed if necessary.

Results

We have tested our method on 20 clinical datasets and compared our method to three other vessel extraction approaches. The evaluation was performed using three quantitative metrics: the Dice coefficient (Dice), the mean symmetric distance (MSD), and the Hausdorff distance (MaxD). The proposed method has achieved a Dice of \(89.56 \pm 3.71\%\), an MSD of \(0.80 \pm 0.33\) mm, and a MaxD of \(11.48 \pm 3.04\) mm, respectively, in our experiments.

Conclusion

The proposed approach can achieve a sound performance with a relatively low computational cost and a minimal user interaction. The proposed algorithm has high potential to be applied for the clinical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. We perform the construction and computation of the energy function \(E_{i}\) within an automatically generated cuboid region of interest \(C_{i}\) at each stage, excluding voxels that are far away from IVC, in order to improve computational efficiency.

  2. An executable file and datasets related to the proposed method will be released in https://sites.google.com/site/zixuyanhomepage

References

  1. Standring S (2008) Gray’s anatomy: the anatomical basis of clinical practice, 40th edn. Elsevier Health Sciences, London

    Google Scholar 

  2. Ugurel M, Battal B, Bozlar U, Nural M, Tasar M, Ors F, Saglam M, Karademir I (2010) Anatomical variations of hepatic arterial system, coeliac trunk and renal arteries: an analysis with multidetector CT angiography. Br J Radiol 83:661–667. doi:10.1259/bjr/21236482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Puchner S, Lu M, Mayrhofer T, Liu T, Pursnani A, Ghoshhajra B, Truong Q, Wiviott S, Fleg J, Hoffmann U, Ferencik M (2015) High-risk coronary plaque at coronary CT angiography is associated with nonalcoholic fatty liver disease, independent of coronary plaque and stenosis burden: results from the ROMICAT II trial. Radiology 274:693–701. doi:10.1148/radiol.14140933

    Article  PubMed  Google Scholar 

  4. Kandpal H, Sharma R, Gamangatti S, Srivastava D, Vashisht S (2008) Imaging the inferior vena cava: a road less traveled. RadioGraphics 28:669–689. doi:10.1148/rg.283075101

    Article  PubMed  Google Scholar 

  5. Okuda K, Kage M, Shrestha S (1998) Proposal of a new nomenclature for budd-chiari syndrome: hepatic vein thrombosis versus thrombosis of the inferior vena cava at its hepatic portion. Hepatology 28:1191–1198. doi:10.1002/hep.510280505

    Article  CAS  PubMed  Google Scholar 

  6. Akbulut S, Yilmaz M, Kahraman A, Yilmaz S (2013) Bilateral lower limb edema caused by compression of the retrohepatic inferior vena cava by a giant hepatic hemangioma. Int Surg 98:229–233. doi:10.9738/intsurg-d-13-00046.1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hartley J, Awrich A, Wong J, Stevens K, Fletcher W (1986) Diagnosis and treatment of the inferior vena cava syndrome in advanced malignant disease. Am J Surg 152:70–74. doi:10.1016/0002-9610(86)90145-5

    Article  CAS  PubMed  Google Scholar 

  8. Schindl M (2005) The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut 54:289–296. doi:10.1136/gut.2004.046524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lefevre T, Mory B, Ardon R, Sanchez-Castro J, Yezzi A (2010, April) Automatic inferior vena cava segmentation in contrast-enhanced CT volumes. In: 2010 IEEE International symposium on biomedical imaging: from nano to macro. IEEE, pp 420–423. doi:10.1109/ISBI.2010.5490321

  10. Abdalla E, Vauthey J, Couinaud C (2002) The caudate lobe of the liver: implications of embryology and anatomy for surgery. Surg Oncol Clin N Am 11(4):835–848. doi:10.1016/S1055-3207(02)00035-2

    Article  PubMed  Google Scholar 

  11. Meinzer H, Thorn M, Cárdenas C (2002) Computerized planning of liver surgeryan overview. Comput Graph 26:569–576. doi:10.1016/s0097-8493(02)00102-4

    Article  Google Scholar 

  12. Bauer C, Pock T, Sorantin E, Bischof H, Beichel R (2010) Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts. Med Image Anal 14:172–184. doi:10.1016/j.media.2009.11.003

    Article  PubMed  Google Scholar 

  13. Lesage D, Angelini E, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13:819–845. doi:10.1016/j.media.2009.07.011

    Article  PubMed  Google Scholar 

  14. Rudyanto R, Kerkstra S, van Rikxoort E, Fetita C, Brillet P, Lefevre C, Xue W, Zhu X, Liang J, Öksüz I, Ünay D, Kadipaşaoğlu K, Estépar R, Ross J, Washko G, Prieto J, Hoyos M, Orkisz M, Meine H, Hüllebrand M, Stöcker C, Mir F, Naranjo V, Villanueva E, Staring M, Xiao C, Stoel B, Fabijanska A, Smistad E, Elster A, Lindseth F, Foruzan A, Kiros R, Popuri K, Cobzas D, Jimenez-Carretero D, Santos A, Ledesma-Carbayo M, Helmberger M, Urschler M, Pienn M, Bosboom D, Campo A, Prokop M, de Jong P, Muñoz-Barrutia, van Ginneken B (2014) Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Med Image Anal 18:1217–1232. doi:10.1016/j.media.2014.07.003

  15. Luu H, Klink C, Moelker A, Niessen W, van Walsum T (2015) Quantitative evaluation of noise reduction and vesselness filters for liver vessel segmentation on abdominal CTA images. Phys Med Biol 60:3905–3926. doi:10.1088/0031-9155/60/10/3905

    Article  PubMed  Google Scholar 

  16. Selle D, Preim B, Schenk A, Peitgen H (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21:1344–1357. doi:10.1109/tmi.2002.801166

    Article  PubMed  Google Scholar 

  17. Oliveira D, Feitosa R, Correia M (2008) Automatic couinaud liver and veins segmentation from CT images. In: BIOSIGNALS, vol 1, pp 249–252. doi:10.5220/0001063202490252

  18. Merveille O, Miraucourt O, Salmon S, Passat N, Talbot H (2016) A variational model for thin structure segmentation based on a directional regularization. In: 2016 IEEE international conference on image processing (ICIP). IEEE, 2016. doi:10.1109/ICIP.2016.7533176

  19. Frericks B, Caldarone F, Nashan B, Savellano D, Stamm G, Kirchhoff T, Shin H, Schenk A, Selle D, Spindler W, Klempnauer J, Peitgen H, Galanski M (2004) 3D CT modeling of hepatic vessel architecture and volume calculation in living donated liver transplantation. Eur Radiol 14:326–333. doi:10.1007/s00330-003-2161-8

    Article  PubMed  Google Scholar 

  20. Shang Q, Clements L, Galloway R, Chapman W, Dawant B (2008, March). Adaptive directional region growing segmentation of the hepatic vasculature. In: Medical imaging 69141F-69141F. International society for optics and photonics. doi:10.1117/12.769565

  21. Foruzan A, Chen Y, Zoroofi R, Kaibori M (2012) Analysis of CT images of liver for surgical planning. Am J Biomed Eng 2:23–28. doi:10.5923/j.ajbe.20120202.05

    Article  Google Scholar 

  22. Wang L, Hansen C, Zidowitz S, Hahn H (2014, March) Segmentation and separation of venous vasculatures in liver CT images. In: SPIE medical imaging 90350Q-90350Q. International society for optics and photonics. doi:10.1117/12.2043406

  23. Homann H, Vesom G, Noble J (2008) Vasculature segmentation of CT liver images using graph cuts and graph-based analysis. In: 2008 5th IEEE international symposium on biomedical imaging: from nano to macro, vol 2008. IEEE, pp 53–56. doi:10.1109/ISBI.2008.4540930

  24. Esneault S, Lafon C, Dillenseger J (2010) Liver vessels segmentation using a hybrid geometrical moments/graph cuts method. IEEE Trans Biomed Eng 57:276–283. doi:10.1109/tbme.2009.2032161

    Article  PubMed  Google Scholar 

  25. Shang Y, Deklerck R, Nyssen E, Markova A, de Mey J, Yang X, Sun Kun (2011) Vascular active contour for vessel tree segmentation. IEEE Trans Biomed Eng 58:1023–1032. doi:10.1109/TBME.2010.2097596

  26. Frangi A, Niessen W, Vincken K, Viergever M (1998, October). Multiscale vessel enhancement filtering. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp. 130–137. doi:10.1007/BFb0056195

  27. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2:143–168. doi:10.1016/s1361-8415(98)80009-1

    Article  CAS  PubMed  Google Scholar 

  28. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639. doi:10.1109/34.56205

    Article  Google Scholar 

  29. Manniesing R, Viergever M, Niessen W (2006) Vessel enhancing diffusion: a scale space representation of vessel structures. Med Image Anal 10:815–825. doi:10.1016/j.media.2006.06.003

    Article  PubMed  Google Scholar 

  30. Frangi A, Niessen W, Nederkoorn P, Elgersma O, Viergever M (2000) Three-dimensional model-based stenosis quantification of the carotid arteries from contrast-enhanced MR angiography. In: IEEE workshop on mathematical methods in biomedical image analysis, 2000. Proceedings. IEEE, pp 110–118. doi:10.1109/MMBIA.2000.852367

  31. Aylward S, Bullitt E (2002) Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21:61–75. doi:10.1109/42.993126

    Article  PubMed  Google Scholar 

  32. Friman O, Hindennach M, Kühnel C, Peitgen H (2010) Multiple hypothesis template tracking of small 3D vessel structures. Med Image Anal 14:160–171. doi:10.1016/j.media.2009.12.003

    Article  PubMed  Google Scholar 

  33. Benmansour F, Cohen L (2010) Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int J Comput Vis 92:192–210. doi:10.1007/s11263-010-0331-0

    Article  Google Scholar 

  34. Cetin S, Demir A, Yezzi A, Degertekin M, Unal G (2013) Vessel tractography using an intensity based tensor model with branch detection. IEEE Trans Med Imaging 32:348–363. doi:10.1109/tmi.2012.2227118

    Article  PubMed  Google Scholar 

  35. Law M, Chung A (2008, October) Three dimensional curvilinear structure detection using optimally oriented flux. In: European conference on computer vision. Springer, Berlin, Heidelberg, pp 368–382. doi:10.1007/978-3-540-88693-8_27

  36. Saha P, Gao Zhiyun, Alford S, Sonka M, Hoffman E (2010) Topomorphologic separation of fused isointensity objects via multiscale opening: separating arteries and veins in 3-D pulmonary CT. IEEE Trans Med Imaging 29:840–851. doi:10.1109/tmi.2009.2038224

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dufour A, Tankyevych O, Naegel B, Talbot H, Ronse C, Baruthio J, Dokládal P, Passat N (2013) Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Med Image Anal 17:147–164. doi:10.1016/j.media.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  38. Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer H (2005) The medical imaging interaction toolkit. Med Image Anal 9:594–604. doi:10.1016/j.media.2005.04.005

    Article  PubMed  Google Scholar 

  39. Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D (2007) Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2:135–142. doi:10.1007/s11548-007-0135-z

    Article  Google Scholar 

  40. Shimizu A, Ohno R, Ikegami T, Kobatake H, Nawano S, Smutek D (2005) Simultaneous extraction of multiple organs from abdominal CT. In: Proceedings of CARS, p 1275. http://web.tuat.ac.jp/~simizlab/paper/2nd_International_Symposium_v2.pdf. Accessed 06 Jan 2017

  41. Okada T, Linguraru M, Yoshida Y, Hori M, Summers R, Chen Y, Sato Y (2011) Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: International MICCAI workshop on computational and clinical challenges in abdominal imaging. Springer, Berlin, Heidelberg, pp 173–180. doi:10.1007/978-3-642-28557-8_22

  42. Okada T, Linguraru M, Hori M, Summers R, Tomiyama N, Sato Y (2015) Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med Image Anal 26:118. doi:10.1016/j.media.2015.06.009

    Article  Google Scholar 

  43. Ruskó L, Bekes G, Németh G, Fidrich M (2007) Fully automatic liver segmentation for contrast-enhanced CT images. MICCAI Wshp. 3D segmentation in the clinic: a grand. Challenge, pp 143–150. http://mbi.dkfz-heidelberg.de/grand-challenge2007/web/p143.pdf. Accessed 12 Apr 2017

  44. Chi Y, Cashman P, Bello F, Kitney R (2007) A discussion on the evaluation of a new automatic liver volume segmentation method for specified CT image datasets. MICCAI Wshp. 3D segmentation in the clinic: a grand. Challenge, pp 167–175. http://mbi.dkfz-heidelberg.de/grand-challenge2007/web/p167.pdf. Accessed 12 Apr 2017

  45. Zhu N, Albert C (2013) Graph-based optimization with tubularity markov tree for 3d vessel segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2013. doi:10.1109/CVPR.2013.288

  46. Couprie C, Grady L, Najman L, Talbot H (2011) Power watershed: a unifying graph-based optimization framework. IEEE Trans Pattern Anal Mach Intell 33:1384–1399. doi:10.1109/TPAMI.2010.200

  47. Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H (2015) 3D liver segmentation using multiple region appearances and graph cuts. Med Phys 42:6840–6852. doi:10.1118/1.4934834

    Article  PubMed  Google Scholar 

  48. Peng J, Wang Y, Kong D (2014) Liver segmentation with constrained convex variational model. Pattern Recognit Lett 43:81–88. doi:10.1016/j.patrec.2013.07.010

    Article  Google Scholar 

  49. Lu F, Wu F, Hu P, Peng Z, Kong D (2016) Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-016-1467-3

  50. Kirişli H, Schaap M, Metz C, Dharampal A, Meijboom W, Papadopoulou S, Dedic A, Nieman K, de Graaf M, Meijs M, Cramer M, Broersen A, Cetin S, Eslami A, Flórez-Valencia L, Lor K, Matuszewski B, Melki I, Mohr B, Oksüz I, Shahzad R, Wang C, Kitslaar P, Unal G, Katouzian A, Orkisz M, Chen C, Precioso F, Najman L, Masood S, Ünay D, van Vliet L, Moreno R, Goldenberg R, Vuçini E, Krestin G, Niessen W, van Walsum T (2013) Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med Image Anal 17:859–876. doi:10.1016/j.media.2013.05.007

    Article  PubMed  Google Scholar 

  51. Hamarneh G, Jassi P (2010) VascuSynth: simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Comput Med Imaging Graph 34:605–616. doi:10.1016/j.compmedimag.2010.06.002

  52. Kong Y, Deng Y, Dai Q (2015) Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Process Lett 22:573–577. doi:10.1109/lsp.2014.2364612

    Article  Google Scholar 

  53. Deng Y, Ren Z, Kong Y, Bao F, Dai Q (2016) A hierarchical fused fuzzy deep neural network for data classification. IEEE Trans Fuzzy Syst. doi:10.1109/tfuzz.2016.2574915

  54. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79. doi:10.1023/A:1007979827043

    Article  Google Scholar 

  55. Fathi A, Naghsh-Nilchi A (2012) Integrating adaptive neuro-fuzzy inference system and local binary pattern operator for robust retinal blood vessels segmentation. Neural Comput Appl 22:163–174. doi:10.1007/s00521-012-1118-8

    Article  Google Scholar 

  56. Zabihi S, Delgir M, Pourreza H (2010) Retinal vessel segmentation using color image morphology and local binary patterns. In: 2010 6th Iranian conference on machine vision and image processing. IEEE, pp 1–5. doi:10.1109/IranianMVIP.2010.5941129

  57. Kylberg G, Sintorn I (2013) Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J Image Video Process 2013:17. doi:10.1186/1687-5281-2013-17

    Article  Google Scholar 

  58. Ni K, Bresson X, Chan T, Esedoglu S (2009) Local histogram based segmentation using the wasserstein distance. Int J Comput Vis 84:97–111. doi:10.1007/s11263-009-0234-0

    Article  Google Scholar 

  59. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23:1222–1239. doi:10.1109/34.969114

  60. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell 26:147–159. doi:10.1109/tpami.2004.1262177

  61. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26:1124–1137. doi:10.1109/tpami.2004.60

  62. Kolmogorov V (2010) Max-flow/min-cut. http://vision.csd.uwo.ca/code/maxflow-v3.01.zip. Accessed 13 Nov 2016

  63. Antiga L (2007) Generalizing vesselness with respect to dimensionality and shape. In: The Insight Journal (ISSN 2327-770X). http://hdl.handle.net/1926/576. Accessed 13 Nov 2016

  64. Couprie C, Najman L, Talbot H (2013) The power watershed algorithm C/C++ code. https://sourceforge.net/projects/powerwatershed/. Accessed 25 Dec 2016

  65. Pantofaru C, Hebert M (2005) A comparison of image segmentation algorithms. In: Robotics Institute Sep 1:336. https://www.ri.cmu.edu/pub_files/pub4/pantofaru_caroline_2005_1/pantofaru_caroline_2005_1.pdf. Accessed 3 Mar 2017

  66. Boykov Y, Funka-Lea G (2006) Graph cuts and efficient N-D image segmentation. Int J Comput Vis 70:109–131. doi:10.1007/s11263-006-7934-5

    Article  Google Scholar 

  67. Daněk O, Matula P, Ortiz-De-Solórzano C, Muñoz-Barrutia A, Maška M, Kozubek M (2009) Segmentation of touching cell nuclei using a two-stage graph cut model. Image Analysis Lecture Notes in Computer Science, pp 410–419. doi:10.1007/978-3-642-02230-2_42

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 91630311, 91330105) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ13A010002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexing Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animal performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Chen, F., Wu, F. et al. Inferior vena cava segmentation with parameter propagation and graph cut. Int J CARS 12, 1481–1499 (2017). https://doi.org/10.1007/s11548-017-1582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1582-9

Keywords

Navigation