Skip to main content
Log in

Compact forceps manipulator with a spherical-coordinate linear and circular telescopic rail mechanism for endoscopic surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

By integrating locally operated small surgical robots in a sterilized area, a surgeon can perform safe and accurate robotically assisted laparoscopic surgery. At present, there is no locally operated compact forceps robot that can operate within a small space while providing a wide working area on the abdominal wall. In the present study, a new spherical-coordinate manipulator with a linear telescopic rail and two circular telescopic rails that can act as a third arm for the surgeon has been developed.

Methods

A compact locally operated detachable end-effector manipulator (LODEM) was developed. This manipulator uses circular telescopic rails with linkage mechanisms for the yaw and pitch axes, and a linear telescopic rail for the insertion/extraction axis is attached to forceps. The dimensions of the manipulator are \(180~\hbox {mm} \times 100~\hbox {mm} \times 90~\hbox {mm}\) when contracted and \(230~\hbox {mm} \times 130~\hbox {mm} \times 120~\hbox {mm}\) when expanded. The positional accuracy, mechanical deflection, and backlash of the prototype were evaluated while performing simulated in vivo laparoscopic surgery.

Results

The positional accuracy, deflection, and backlash of the telescopic rail mechanism were 2.1, 1.8, and 5.1 mm, respectively. The manipulator could successfully handle the target and maintain stability, while the arms of the endoscope specialist were free from collisions with the manipulator during an in vivo laparoscopic surgery.

Conclusions

A compact LODEM was designed to facilitate minimally invasive, robotically assisted laparoscopic surgery by a doctor working near the patient. This device could be used for such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guthart GS, Salisbury JJ (2000) The Intuitive telesurgery system: overview and application. In: Proceedings of IEEE ICRA, pp 618–621: doi:10.1109/ROBOT.2000.844121

  2. Taylor RH, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans Robot Autom 19(5):765–781. doi:10.1109/TRA.2003.817058

    Article  Google Scholar 

  3. Torres BJR, Buess G, Waseda M, Gacek I, Becerra GF, Manukyan GA, Inaki N (2009) Laparoscopic intracorporal colorectal sutured anastomosis using the Radius Surgical System in a phantom model. Surg Endosc 23(7):1624–1632. doi:10.1007/s00464-008-9992-y

    Article  Google Scholar 

  4. Nguyen NT, Reavis KM, Hinojosa MW, Smith BR, Wilson SE (2009) Laparoscopic transumbilical cholecystectomy without visible abdominal scars. J Gastrointest Surg 13(6):1125–1128. doi:10.1007/s11605-008-0642-4

    Article  PubMed  Google Scholar 

  5. Okamoto J, Toyoda K, Muragaki Y, Iseki H, Fujie M, Goto T, Hongo K (2011) Clinical use of neurosurgical arm holding manipulator. Int J CARS 6(Suppl 1):S83–S84

    Google Scholar 

  6. Goto T, Hongo K, Yako T, Hara Y, Okamoto J, Toyoda K, Fujie MG, Iseki H (2013) The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery 72(Suppl 1):39–42. doi:10.1227/NEU.0b013e318271ee66

    Article  PubMed  Google Scholar 

  7. Gumbs AA, Crovari F, Vidal C, Henri P, Gayet B (2007) Modified robotic lightweight endoscope (ViKY) validation in vivo in a porcine model. Surg Innov 14(4):261–264. doi:10.1177/1553350607310281

    Article  PubMed  Google Scholar 

  8. Kobayashi E, Masamune K, Sakuma I, Dohi T, Hashimoto D (1999) A new safe laparoscopic manipulator system with a five-bar linkage mechanism and an optimal zoom. CAS 4(4):182–192. doi:10.1007/BFb0056203

    CAS  Google Scholar 

  9. Kawai T, Hashida J, Myongsyu S, Nishizawa Y, Nakamura T, Morita N, Murotani T, Mochizuki S (2012) Locally operated detachable end-effector manipulator for endoscopic surgery. J JSCAS 14(1):5–14 (in Japanese)

    Google Scholar 

  10. Kawai T, Shin M, Nishizawa Y, Horise Y, Nisihkawa A, Nakamura T (2015) Mobile locally operated detachable end-effector manipulator for endoscopic surgery. Int J CARS 10(2):161–169. doi:10.1007/s11548-014-1062-4

    Article  Google Scholar 

  11. Bihlmaier A (2016) Learning dynamic spatial relations. Springer Fachmedien Wiesbaden, Wiesbaden. doi:10.1007/978-3-658-14914-7

  12. Gillen S, Pletzer B, Heiligensetzer A, Wolf P, Kleeff J, Feussner H, Fürst A (2014) Solo-surgical laparoscopic cholecystectomy with a joystick-guided camera device: a case–control study. Surg Endosc 28(1):164–170. doi:10.1007/s00464-013-3142-x

    Article  PubMed  Google Scholar 

  13. AKTORmed GmbH. http://aktormed.info/. Accessed 21 Feb 2017

  14. Kihara K (ed) (2015) Gasless single-port robosurgeon surgery in urology. Springer, Tokyo

    Google Scholar 

  15. RIVERFIELD Inc. http://www.riverfieldinc.com/. Accessed 21 Feb 2017

  16. Stolzenburg JU, Franz T, Kallidonis P, Minh D, Dietel A, Hicks J, Nicolaus M, Al-Aown A, Liatsikos E (2010) Comparison of the FreeHand robotic camera holder with human assistants during endoscopic extraperitoneal radical prostatectomy. BJU Int 107(6):970–974. doi:10.1111/j.1464-410X.2010.09656.x

    Article  PubMed  Google Scholar 

  17. Freehand 2010 Ltd. http://www.freehandsurgeon.com/. Accessed 21 Feb 2017

  18. ENDOCNTROL. http://www.endocontrol-medical.com/. Accessed 21 Feb 2017

  19. Long JA, Cinquin P, Troccaz J, Voros S, Berkelman P, Descotes JL, Letoublon C, Rambeaud JJ (2007) Development of miniaturized light endoscope-holder robot for laparoscopic surgery. J Endourol 21(8):911–914. doi:10.1089/end.2006.0328

    Article  PubMed  Google Scholar 

  20. Kawai T, Hayashi H, Nisihkawa A, Nishizawa Y, Nakamura T (2016) Compact forceps manipulator with spherical-coordinate linear and circular telescopic rail mechanism for laparoscopic surgery. Int J CARS 11(Suppl 1):S237–S238

    Google Scholar 

  21. Heijnsdijk EA, Pasdeloup A, Dankelman J, Gouma DJ (2004) The optimal mechanical efficiency of laparoscopic forceps. Surg Endosc 18(12):1766–1770. doi:10.1007/s00464-004-9000-0

    Article  CAS  PubMed  Google Scholar 

  22. Kuo CH, Dai JS (2009) Robotics for minimally invasive surgery: a historical review from the perspective of kinematics. In: International symposium on history of machines and mechanisms. Springer, Berlin, pp 337–354. doi:10.1007/978-1-4020-9485-9_24

  23. Arata J, Tada Y, Kozuka H, Wada T, Saito Y, Ikedo N, Hayashi Y, Fujii M, Kajita Y, Mizuno M, Wakabayashi T, Yoshida J, Fujimoto H (2011) Neurosurgical robotic system for brain tumor removal. Int J CARS 6(3):375–385. doi:10.1007/s11548-010-0514-8

    Article  Google Scholar 

  24. Ida Y, Sugita N, Ueta T, Tamaki Y, Tanimoto K, Mitsuishi M (2012) Microsurgical robotic system for vitreoretinal surgery. Int J CARS 7(1):27–34. doi:10.1007/s11548-011-0602-4

    Article  Google Scholar 

  25. Masamune K, Kobayashi E, Masutani Y, Suzuki M, Dohi T, Iseki H, Takakura K (1995) Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J Image Guid Surg 1(4):242–248. doi:10.1002/(SICI)1522-712X(1995)1:4<242::AID-IGS7>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  26. Stoianovici D, Cleary K, Patriciu A, Mazilu D, Stanimir A, Craciunoiu N, Watson V, Kavoussi L (2003) AcuBot: a robot for radiological interventions. IEEE Trans Robot Autom 19(5):927–930. doi:10.1109/TRA.2003.817072

    Article  Google Scholar 

  27. Lum MJ, Rosen J, Sinanan MN, Hannaford B (2006) Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches. IEEE Trans Biomed Eng 53(7):1440–1445. doi:10.1109/TBME.2006.875716

    Article  PubMed  Google Scholar 

  28. Zemiti N, Morel G, Ortmaier T, Bonnet N (2007) Mechatronic design of a new robot for force control in minimally invasive surgery. IEEE/ASME Trans Mechatron 12(2):143–153. doi:10.1109/TMECH.2007.892831

    Article  Google Scholar 

  29. Tadano K, Kawashima K, Kojima K, Tanaka N (2010) Development of a pneumatic surgical manipulator IBIS IV. J Robot Mechatron 22(2):179–188. doi:10.20965/jrm.2010.p0179

    Article  Google Scholar 

  30. Kawai T, Tomokane K, Nishikawa A, Nishizawa Y, Nakamura T (2015) Development of handy switch interface with five-dofs for locally operated forceps manipulator. In: Proceedings of JSMBE, p S204_02. doi:10.11239/jsmbe.53.S204_02

  31. Kawai T, Fukunishi M, Nishikawa A, Nishizawa Y, Nakamura T (2014) Hands-free interface for surgical procedures based on foot movement patterns. Proceedings of IEEE EMBC, pp 345–348. doi:10.1109/EMBC.2014.6943600

  32. Andersen B, Ulrich H, Rehmann D, Kock AK, Wrage JH, Ingenerf J (2015) A gateway for reporting medical device observations to clinical information systems. Int J CARS 10(Suppl 1):S156

    Google Scholar 

  33. Okamoto J, Masamune K, Iseki H, Muragaki Y (2015) Development of a next-generation operating room “Smart Cyber Operating Theater (SCOT)”—development concept and project summary. Int J CARS 10(Suppl 1):S156–S158

    Google Scholar 

  34. Amato C, Ratib O, Lemke H (2015) Intelligent operating rooms: preparing for the new digital patient model challenges. Int J CARS 10(Suppl 1):S160–S161

    Google Scholar 

  35. Kawai T, Matsumoto T, Horise Y, Nishikawa A, Nishizawa Y, Nakamura T (2015) Flexible locally operated end-effector manipulator with actuator interchangeability for single-incision laparoscopic surgery. Int J CARS 10(Suppl 1):S246–S247

    Google Scholar 

Download references

Acknowledgements

The preset study was supported in part by JSPS Kakenhi (JP15K05917, JP16H01859) and The National Cancer Center Research and Development Fund (25-A-8, 28-A-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikazu Kawai.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with regard to this study.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. The animal studies were approved by the ethics committee of Chiba University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, T., Hayashi, H., Nishizawa, Y. et al. Compact forceps manipulator with a spherical-coordinate linear and circular telescopic rail mechanism for endoscopic surgery. Int J CARS 12, 1345–1353 (2017). https://doi.org/10.1007/s11548-017-1595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1595-4

Keywords

Navigation