Skip to main content
Log in

Flexible needle and patient tracking using fractional scanning in interventional CT procedures

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

We present a new method for flexible needle and patient localization in interventional CT procedures based on fractional CT scanning. Our method accurately localizes the trajectory of a flexible needle to which a spherical marker is attached at a known distance from the tip with respect to a baseline scan of patient in the CT scanner coordinate frame.

Methods

The localization is achieved with a significantly lower dose compared to a full scan using sparse view angle sampling and without reconstructing the CT image of the repeat scan. Our method starts by performing rigid registration between the patient and the baseline scan in 3D Radon space computed from the sparse projection data. It then computes 2D projection difference images in which the flexible needle and the spherical marker appear as prominent features. Their 3D spatial locations are then automatically extracted from the projection images to accurately trace the flexible needle trajectory. To validate our method, we conducted registration and needle trajectory localization experiments in seven abdomen phantom scans using a short and a long flexible needle.

Results

Our experimental results yield a mean needle trajectory localization error of 0.7 ± 0.2 mm and a mean tip localization error of 2.4 ± 0.9 mm with a \(\times \)7.5 radiation dose reduction with respect to a full CT scan.

Conclusions

The significant radiation dose reduction enables more frequent needle trajectory localization during the needle insertion for a similar total dose, or a reduced total dose for the same localization frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta R, Walsh C, Wang IS, Kachelrieß M, Kuntz J, Bartling S (2014) CT-guided interventions: current practice and future directions. In: Jolesz FA (ed) Intraoperative imaging and image-guided therapy. Springer, New York, pp 173–191

  2. Boas FE, Fleischmann D (2012) CT artifacts: causes and reduction techniques. Imaging Med 4(2):229–240

    Article  Google Scholar 

  3. Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA (2000) CT scanning: patterns of use and dose. J Radiol Prot 20(4):353

    Article  PubMed  Google Scholar 

  4. Chodick G, Ronckers CM, Shalev V, Ron E et al (2007) Excess lifetime cancer mortality risk attributable to radiation exposure from computed tomography examinations in children. IMAJ-RAMAT GAN- 9(8):584

    Google Scholar 

  5. Miller DL, Vañó E, Bartal G, Balter S, Dixon R, Padovani R, Schueler B, Cardella JF, De Baère T (2010) Occupational radiation protection in interventional radiology: a joint guideline of the Cardiovascular and Interventional Radiology Society of Europe and the Society of Interventional Radiology. Cardiovasc Interv Radiol 33(2):230–239

    Article  Google Scholar 

  6. Sarti M, Brehmer WP, Gay SB (2012) Low-dose techniques in CT-guided interventions. Radiographics 32(4):1109–1119

    Article  PubMed  Google Scholar 

  7. Stoeckelhuber BM, Leibecke T, Schulz E, Melchert UH, Bergmann-Koester CU, Helmberger T, Gellissen J (2005) Radiation dose to the radiologist’s hand during continuous ct fluoroscopy-guided interventions. Cardiovasc Interv Radiol 28(5):589–594

    Article  Google Scholar 

  8. Sheafor DH, Paulson EK, Kliewer MA, DeLong DM, Nelson RC (2000) Comparison of sonographic and CT guidance techniques: does CT fluoroscopy decrease procedure time? Am J Roentgenol 174(4):939–942

    Article  CAS  Google Scholar 

  9. Orth RC, Wallace MJ, Kuo MD of the Society of Interventional Radiology TAC et al (2008) C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol 19(6):814–820

    Article  Google Scholar 

  10. Siemens Healthcare (2018) syngo DynaCT. https://www.HrBhealthcare.siemens.com/angio/options-and-upgrades/clinical-softHrBware-applications/syngo-dynact/technical-details. Accessed 24 Oct 2018

  11. Manduca A, Yu L, Trzasko JD, Khaylova N, Kofler JM, McCollough CM, Fletcher JG (2009) Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med Phys 36(11):4911–4919

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Wang Y, Zhang W, Lin F, Pu Y, Zhou J (2016) Statistical iterative reconstruction using adaptive fractional order regularization. Biomed Opt Express 7(3):1015–1029

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim K, Ye JC, Worstell W, Ouyang J, Rakvongthai Y, El Fakhri G, Li Q (2015) Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty. IEEE Trans Med Imaging 34(3):748–760

    Article  PubMed  Google Scholar 

  14. Niu S, Gao Y, Bian Z, Huang J, Chen W, Yu G, Liang Z, Ma J (2014) Sparse-view X-ray CT reconstruction via total generalized variation regularization. Phys Med Biol 59(12):2997

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, Liang Z, Ma J, Lu H, Wang K, Zhang H, Moore W (2014) Total variation-stokes strategy for sparse-view X-ray CT image reconstruction. IEEE Trans Med Imaging 33(3):749–763

    Article  PubMed  PubMed Central  Google Scholar 

  16. Medan G, Shamul N, Joskowicz L (2017) Sparse 3D Radon space rigid registration of CT scans: method and validation study. IEEE Trans Med Imaging 36(2):497–506

    Article  CAS  PubMed  Google Scholar 

  17. Medan G, Joskowicz L (2017) Reduced-dose imageless needle and patient tracking in interventional CT procedures. IEEE Trans Med Imaging 36(12):2449–2456

    Article  CAS  PubMed  Google Scholar 

  18. Wu G, Li X, Lehocky CA, Riviere CN (2013) Automatic steering of manually inserted needles. In: IEEE international conference on systems, man, and cybernetics (SMC), 2013. IEEE, pp 1488–1493

  19. Engh JA, Minhas DS, Kondziolka D, Riviere CN (2010) Percutaneous intracerebral navigation by duty-cycled spinning of flexible bevel-tipped needles. Neurosurgery 67(4):1117–1123

    Article  PubMed  Google Scholar 

  20. Ben-David E, Shochat M, Roth I, Nissenbaum I, Sosna J, Goldberg SN (2018) Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J Vasc Interv Radiol 29:1440–1446

    Article  PubMed  Google Scholar 

  21. Glozman D, Shoham M (2007) Image-guided robotic flexible needle steering. IEEE Trans Robot 23(3):459–467

    Article  Google Scholar 

  22. Vrooijink GJ, Abayazid M, Misra S (2013) Real-time three-dimensional flexible needle tracking using two-dimensional ultrasound. In: IEEE international conference on robotics and automation (ICRA), 2013. IEEE, pp 1688–1693

  23. Marinetto E, Uneri A, De Silva T, Reaungamornrat S, Zbijewski W, Sisniega A, Vogt S, Kleinszig G, Pascau J, Siewerdsen J (2017) Integration of free-hand 3D ultrasound and mobile C-arm cone-beam CT: Feasibility and characterization for real-time guidance of needle insertion. Comput Med Imaging Graph 58:13–22

    Article  CAS  PubMed  Google Scholar 

  24. Huo B, Zhao X, Han J, Xu W (2015) Shape reconstruction and attitude estimation of bevel-tip needle via CT-guidance. In: IEEE international conference on robotics and biomimetics (ROBIO), 2015. IEEE, pp 620–625

  25. Yaniv Z, Cheng P, Wilson E, Popa T, Lindisch D, Campos-Nanez E, Abeledo H, Watson V, Cleary K, Banovac F (2010) Needle-based interventions with the image-guided surgery toolkit (IGSTK): from phantoms to clinical trials. IEEE Trans Biomed Eng 57(4):922–933

    Article  PubMed  Google Scholar 

  26. Cong W, Yang J, Ai D, Chen Y, Liu Y, Wang Y (2015) Quantitative analysis of deformable model-based 3-D reconstruction of coronary artery from multiple angiograms. IEEE Trans Biomed Eng 62(8):2079–2090

    Article  PubMed  Google Scholar 

  27. Khan M (2012) A new method for video data compression by quadratic Bézier curve fitting. Signal Image Video Process 6(1):19–24

    Article  Google Scholar 

  28. Adelman Z (2018) Reduced-dose region-of-interest image reconstruction in repeat ct scanning. Master Thesis, The Hebrew University of Jerusalem, Dec 2018

Download references

Acknowledgements

We thank Eyal Lin and Ronen Shter of GE Healthcare Israel for the CT scans and for their valuable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Medan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by Kamin Grant 57706, Office of the Chief Scientist, Ministry of Trade and Industry, Israel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medan, G., Joskowicz, L. Flexible needle and patient tracking using fractional scanning in interventional CT procedures. Int J CARS 14, 1039–1047 (2019). https://doi.org/10.1007/s11548-019-01945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-01945-x

Keywords

Navigation