Skip to main content
Log in

Integrated datasets of normalized brain with functional localization using intra-operative electrical stimulation

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to transform brain mapping data into a digitized intra-operative MRI and integrated brain function dataset for predictive glioma surgery considering tumor resection volume, as well as the intra-operative and postoperative complication rates.

Methods

Brain function data were transformed into digitized localizations on a normalized brain using a modified electric stimulus probe after brain mapping. This normalized brain image with functional information was then projected onto individual patient’s brain images including predictive brain function data.

Results

Log data were successfully acquired using a medical device integrated into intra-operative MR images, and digitized brain function was converted to a normalized brain data format in 13 cases. For the electrical stimulation positions in which patients showed speech arrest (SA), speech impairment (SI), motor and sensory responses during cortical mapping processes in awake craniotomy, the data were tagged, and the testing task and electric current for the stimulus were recorded. There were 13 SA, 7 SI, 8 motor and 4 sensory responses (32 responses) in total. After evaluation of transformation accuracy in 3 subjects, the first transformation from intra- to pre-operative MRI using non-rigid registration was calculated as 2.6 ± 1.5 and 2.1 ± 0.9 mm, examining neighboring sulci on the electro-stimulator position and the cortex surface near each tumor, respectively; the second transformation from pre-operative to normalized brain was 1.7 ± 0.8 and 1.4 ± 0.5 mm, respectively, representing acceptable accuracy.

Conclusion

This image integration and transformation method for brain normalization should facilitate practical intra-operative brain mapping. In the future, this method may be helpful for pre-operatively or intra-operatively predicting brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3: a
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. http://brainvisa.info/ BrainVISA

  2. Tamura M, Maruyama T, Nitta M, Saito T, Yoshimitsu K, Konishi Y, Okamoto J, Ikuta S, Masamune K, Mangin J-F, Okada Y, Iseki H, Muragaki Y (2015) Preoperative MRI-based delineation of the sulcal and gyral anatomy and its usefulness for glioma resection in neurosurgery. Int J Comput Assist Radiol Surg 10:S91–S92

    Google Scholar 

  3. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121(5):1115–1123. https://doi.org/10.3171/2014.7.JNS132449

    Article  PubMed  Google Scholar 

  4. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A, Hernandez-Hermann M, Gomez L, Ye X, Weingart JD, Olivi A, Blakeley J, Gallia GL, Lim M, Brem H, Quinones-Hinojosa A (2014) Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol 16(1):113–122. https://doi.org/10.1093/neuonc/not137

    Article  PubMed  Google Scholar 

  5. Nitta M, Muragaki Y, Maruyama T, Ikuta S, Komori T, Maebayashi K, Iseki H, Tamura M, Saito T, Okamoto S, Chernov M, Hayashi M, Okada Y (2015) Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection. Neurosurg Focus 38(1):E7. https://doi.org/10.3171/2014.10.FOCUS14651

    Article  PubMed  Google Scholar 

  6. Hervey-Jumper SL, Li J, Lau D, Molinaro AM, Perry DW, Meng L, Berger MS (2015) Awake craniotomy to maximize glioma resection: methods and technical nuances over a 27-year period. J Neurosurg 123(2):325–339. https://doi.org/10.3171/2014.10.jns141520

    Article  PubMed  Google Scholar 

  7. Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Okada Y (2015) Intraoperative functional mapping and monitoring during glioma surgery. Neurol Med Chir (Tokyo) 55(1):1–13. https://doi.org/10.2176/nmc.ra.2014-0215

    Article  Google Scholar 

  8. Mandonnet E, Sarubbo S, Duffau H (2017) Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurg Rev 40(1):29–35. https://doi.org/10.1007/s10143-016-0723-x

    Article  PubMed  Google Scholar 

  9. Muragaki Y, Iseki H, Maruyama T, Tanaka M, Shinohara C, Suzuki T, Yoshimitsu K, Ikuta S, Hayashi M, Chernov M, Hori T, Okada Y, Takakura K (2011) Information-guided surgical management of gliomas using low-field-strength intraoperative MRI. Acta Neurochir Suppl 109:67–72. https://doi.org/10.1007/978-3-211-99651-5_11

    Article  PubMed  Google Scholar 

  10. Yoshimitsu K, Maruyama T, Muragaki Y, Suzuki T, Saito T, Nitta M, Tanaka M, Chernov M, Tamura M, Ikuta S, Okamoto J, Okada Y, Iseki H (2011) Wireless modification of the intraoperative examination monitor for awake surgery. Neurol Med Chir (Tokyo) 51(6):472–476

    Article  Google Scholar 

  11. Tamura M, Muragaki Y, Saito T, Maruyama T, Nitta M, Tsuzuki S, Iseki H, Okada Y (2015) Strategy of surgical resection for glioma based on intraoperative functional mapping and monitoring. Neurol Med Chir (Tokyo) 55(5):383–398

    Article  Google Scholar 

  12. Mangin JF, Riviere D, Cachia A, Duchesnay E, Cointepas Y, Papadopoulos-Orfanos D, Scifo P, Ochiai T, Brunelle F, Regis J (2004) A framework to study the cortical folding patterns. Neuroimage 23(Suppl 1):S129–S138

    Article  PubMed  Google Scholar 

  13. Papademetris X, DeLorenzo C, Flossmann S, Neff M, Vives KP, Spencer DD, Staib LH, Duncan JS (2009) From medical image computing to computer-aided intervention: development of a research interface for image-guided navigation. Int J Med Robot 5(2):147–157. https://doi.org/10.1002/rcs.241

    Article  PubMed  PubMed Central  Google Scholar 

  14. http://openigtlink.org OpenIGTLink

  15. Tokuda J, Fischer GS, Papademetris X, Yaniv Z, Ibanez L, Cheng P, Liu H, Blevins J, Arata J, Golby AJ, Kapur T, Pieper S, Burdette EC, Fichtinger G, Tempany CM, Hata N (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot 5(4):423–434. https://doi.org/10.1002/rcs.274

    Article  PubMed  PubMed Central  Google Scholar 

  16. https://www.slicer.org 3D Slicer

  17. http://www.fil.ion.ucl.ac.uk/spm/ Statistical Parametric Mapping (SPM)

  18. http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009 The McConnell Brain Imaging Centre

  19. Liu Y, Kot A, Drakopoulos F, Yao C, Fedorov A, Enquobahrie A, Clatz O, Chrisochoides NP (2014) An ITK implementation of a physics-based non-rigid registration method for brain deformation in image-guided neurosurgery. Front Neuroinform 8:33. https://doi.org/10.3389/fninf.2014.00033

    Article  PubMed  PubMed Central  Google Scholar 

  20. http://www.mathworks.com/index.html?s_tid=gn_loc_drop MATLAB

  21. https://itk.org ITK (Insight Segmentation and Registration Toolkit)

  22. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018

    Article  PubMed  Google Scholar 

  23. Tristan-Vega A, Garcia-Perez V, Aja-Fernandez S, Westin CF (2012) Efficient and robust nonlocal means denoising of MR data based on salient features matching. Comput Methods Programs Biomed 105(2):131–144. https://doi.org/10.1016/j.cmpb.2011.07.014

    Article  PubMed  Google Scholar 

  24. https://www.cgal.org/ CGAL

  25. https://doc.cgal.org/latest/Mesh_3/index.html CGAL 4.13–3D Mesh Generation

  26. Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F, Baratta P, Songa V, Conte V, Branca V, Stocchetti N, Papagno C, Gaini SM (2007) Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 60(1):67–80. https://doi.org/10.1227/01.neu.0000249206.58601.de(discussion 80-62)

    Article  PubMed  Google Scholar 

  27. Sanai N, Mirzadeh Z, Berger MS (2008) Functional outcome after language mapping for glioma resection. N Engl J Med 358(1):18–27. https://doi.org/10.1056/NEJMoa067819

    Article  CAS  PubMed  Google Scholar 

  28. Boetto J, Bertram L, Moulinie G, Herbet G, Moritz-Gasser S, Duffau H (2015) Low rate of intraoperative seizures during awake craniotomy in a prospective cohort with 374 supratentorial brain lesions: electrocorticography is not mandatory. World Neurosurg. https://doi.org/10.1016/j.wneu.2015.07.075

    Article  PubMed  Google Scholar 

  29. Kayama T (2012) The guidelines for awake craniotomy guidelines committee of the Japan awake surgery conference. Neurol Med Chir (Tokyo) 52(3):119–141

    Article  Google Scholar 

  30. Mandonnet E, Winkler PA, Duffau H (2010) Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien) 152(2):185–193. https://doi.org/10.1007/s00701-009-0469-0

    Article  Google Scholar 

  31. Coello AF, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H (2013) Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg 119(6):1380–1394. https://doi.org/10.3171/2013.6.JNS122470

    Article  Google Scholar 

  32. Ottenhausen M, Krieg SM, Meyer B, Ringel F (2015) Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery. Neurosurg Focus 38(1):E3. https://doi.org/10.3171/2014.10.FOCUS14611

    Article  PubMed  Google Scholar 

  33. Sakai KL (2005) Language acquisition and brain development. Science 310(5749):815–819. https://doi.org/10.1126/science.1113530

    Article  CAS  PubMed  Google Scholar 

  34. Kinno R, Ohta S, Muragaki Y, Maruyama T, Sakai KL (2014) Differential reorganization of three syntax-related networks induced by a left frontal glioma. Brain 137(Pt 4):1193–1212. https://doi.org/10.1093/brain/awu013

    Article  PubMed  Google Scholar 

  35. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ (2017) Deep learning for brain MRI segmentation: state of the art and future directions. J Digit Imaging 30(4):449–459. https://doi.org/10.1007/s10278-017-9983-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen H, Dou Q, Yu L, Qin J, Heng PA (2018) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170:446–455. https://doi.org/10.1016/j.neuroimage.2017.04.041

    Article  PubMed  Google Scholar 

  37. Corrivetti F, de Schotten MT, Poisson I, Froelich S, Descoteaux M, Rheault F, Mandonnet E (2019) Dissociating motor-speech from lexico-semantic systems in the left frontal lobe: insight from a series of 17 awake intraoperative mappings in glioma patients. Brain Struct Funct. https://doi.org/10.1007/s00429-019-01827-7

    Article  PubMed  Google Scholar 

  38. Ono M (1990) Atlas of the Cerebral Sulci. Thieme, Stuttgart

    Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (B-JP22300093, C-JP12007086), Core Research for Evolutional Science and Technology (CREST), JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy, JSPS KAKENHI Grant-JP15H01128, JP17H05306) and MIC Grant-JP162101001 Strategic Information and Communications R&D Promotion Programme (SCOPE). The authors would like to thank Dr. Etsuko Kobayashi for advisory assistance with precision biomedical engineering and Prof. Akimasa Hirata for advisory assistance with the physics of brain mapping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Tamura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving patients were in accordance with the ethical standards of the ethics committee of Tokyo Women’s Medical University and with the 1964 Declaration of Helsinki, as revised in 2013. Each patient provided informed consent before the surgical procedure.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, M., Sato, I., Maruyama, T. et al. Integrated datasets of normalized brain with functional localization using intra-operative electrical stimulation. Int J CARS 14, 2109–2122 (2019). https://doi.org/10.1007/s11548-019-01957-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-01957-7

Keywords

Navigation