Skip to main content
Log in

Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited.

Methods

To provide an overview of state-of-the-art blood flow simulation capabilities, the Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH) was conducted. Seventeen research groups from all over the world performed segmentations and hemodynamic simulations to identify the ruptured aneurysm in a patient harboring five IAs. Although simulation setups revealed good similarity, clear differences exist with respect to the analysis of aneurysm shape and blood flow results. Most groups (12/71%) included morphological and hemodynamic parameters in their analysis, with aspect ratio and wall shear stress as the most popular candidates, respectively.

Results

The majority of groups (7/41%) selected the largest aneurysm as being the ruptured one. Four (24%) of the participating groups were able to correctly select the ruptured aneurysm, while three groups (18%) ranked the ruptured aneurysm as the second most probable. Successful selections were based on the integration of clinically relevant information such as the aneurysm site, as well as advanced rupture probability models considering multiple parameters. Additionally, flow characteristics such as the quantification of inflow jets and the identification of multiple vortices led to correct predictions.

Conclusions

MATCH compares state-of-the-art image-based blood flow simulation approaches to assess the rupture risk of IAs. Furthermore, this challenge highlights the importance of multivariate analyses by combining clinically relevant metadata with advanced morphological and hemodynamic quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24(4):559–566

    PubMed  Google Scholar 

  2. Kobayashi N, Miyachi S, Okamoto T, Hattori K, Kojima T, Nakai K, Qian S, Takeda H, Yoshida J (2004) Computer simulation of flow dynamics in an intracranial aneurysm. Effects of vessel wall pulsation on a case of ophthalmic aneurysm. Interv Neuroradiol: J Peritherapeutic Neuroradiol Surg Proced Relat Neurosci 10(Suppl 1):155–160. https://doi.org/10.1177/15910199040100s127

    Article  Google Scholar 

  3. Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui AH, Levy EI, Meng H (2011) Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152. https://doi.org/10.1161/STROKEAHA.110.592923

    Article  PubMed  Google Scholar 

  4. Xiang J, Yu J, Snyder KV, Levy EI, Siddiqui AH, Meng H (2016) Hemodynamic-morphological discriminant models for intracranial aneurysm rupture remain stable with increasing sample size. J Neurointerv Surg 8(1):104–110. https://doi.org/10.1136/neurintsurg-2014-011477

    Article  PubMed  Google Scholar 

  5. Cebral JR, Mut F, Weir J, Putman C (2011) Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol 32(1):145–151. https://doi.org/10.3174/ajnr.A2419

    Article  CAS  PubMed  Google Scholar 

  6. Cebral JR, Mut F, Weir J, Putman CM (2011) Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am J Neuroradiol 32(2):264–270. https://doi.org/10.3174/ajnr.A2274

    Article  CAS  PubMed  Google Scholar 

  7. Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, Jiménez C, Cebral JR (2018) Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int J Comput Assist Radiol Surg 13(11):1767–1779. https://doi.org/10.1007/s11548-018-1837-0

    Article  PubMed  Google Scholar 

  8. Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thévenin D (2014) Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng. https://doi.org/10.1115/1.4026108

    Article  PubMed  Google Scholar 

  9. Roloff C, Stucht D, Beuing O, Berg P (2019) Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD. J Neurointerv Surg 11(3):275–282. https://doi.org/10.1136/neurintsurg-2018-013921

    Article  PubMed  Google Scholar 

  10. Raschi M, Mut F, Byrne G, Putman CM, Tateshima S, Viñuela F, Tanoue T, Tanishita K, Cebral JR (2012) CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int J Numer Methods Biomed Eng 28(2):214–228. https://doi.org/10.1002/cnm.1459

    Article  Google Scholar 

  11. Paliwal N, Damiano RJ, Varble NA, Tutino VM, Dou Z, Siddiqui AH, Meng H (2017) Methodology for computational fluid dynamic validation for medical use: application to intracranial aneurysm. J Biomech Eng. https://doi.org/10.1115/1.4037792

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bouillot P, Brina O, Ouared R, Lovblad K-O, Farhat M, Pereira VM (2014) Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS ONE 9(12):e113762. https://doi.org/10.1371/journal.pone.0113762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinman DA, Hoi Y, Fahy P, Morris L, Walsh MT, Aristokleous N, Anayiotos AS, Papaharilaou Y, Arzani A, Shadden SC, Berg P, Janiga G, Bols J, Segers P, Bressloff NW, Cibis M, Gijsen FH, Cito S, Pallarés J, Browne LD, Costelloe JA, Lynch AG, Degroote J, Vierendeels J, Fu W, Qiao A, Hodis S, Kallmes DF, Kalsi H, Long Q, Kheyfets VO, Finol EA, Kono K, Malek AM, Lauric A, Menon PG, Pekkan K, Esmaily Moghadam M, Marsden AL, Oshima M, Katagiri K, Peiffer V, Mohamied Y, Sherwin SJ, Schaller J, Goubergrits L, Usera G, Mendina M, Valen-Sendstad K, Habets DF, Xiang J, Meng H, Yu Y, Karniadakis GE, Shaffer N, Loth F (2013) Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CFD challenge. J Biomech Eng 135(2):21016. https://doi.org/10.1115/1.4023382

    Article  Google Scholar 

  14. Janiga G, Berg P, Sugiyama S, Kono K, Steinman DA (2015) The computational fluid dynamics rupture challenge 2013—phase I: prediction of rupture status in intracranial aneurysms. AJNR Am J Neuroradiol 36(3):530–536. https://doi.org/10.3174/ajnr.A4157

    Article  CAS  PubMed  Google Scholar 

  15. Berg P, Roloff C, Beuing O, Voss S, Sugiyama S-I, Aristokleous N, Anayiotos AS, Ashton N, Revell A, Bressloff NW, Brown AG, Chung BJ, Cebral JR, Copelli G, Fu W, Qiao A, Geers AJ, Hodis S, Dragomir-Daescu D, Nordahl E, Bora Suzen Y, Owais Khan M, Valen-Sendstad K, Kono K, Menon PG, Albal PG, Mierka O, Münster R, Morales HG, Bonnefous O, Osman J, Goubergrits L, Pallares J, Cito S, Passalacqua A, Piskin S, Pekkan K, Ramalho S, Marques N, Sanchi S, Schumacher KR, Sturgeon J, Švihlová H, Hron J, Usera G, Mendina M, Xiang J, Meng H, Steinman DA, Janiga G (2015) The computational fluid dynamics rupture challenge 2013–phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng 137(12):121008. https://doi.org/10.1115/1.4031794

    Article  PubMed  Google Scholar 

  16. Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, Pallares J, Cito S, Piskin S, Pekkan K, Geers AJ, Larrabide I, Rapaka S, Mihalef V, Fu W, Qiao A, Jain K, Roller S, Mardal K-A, Kamakoti R, Spirka T, Ashton N, Revell A, Aristokleous N, Houston JG, Tsuji M, Ishida F, Menon PG, Browne LD, Broderick S, Shojima M, Koizumi S, Barbour M, Aliseda A, Morales HG, Lefèvre T, Hodis S, Al-Smadi YM, Tran JS, Marsden AL, Vaippummadhom S, Einstein GA, Brown AG, Debus K, Niizuma K, Rashad S, Sugiyama S-I, Owais Khan M, Updegrove AR, Shadden SC, Cornelissen BMW, Majoie CBLM, Berg P, Saalfield S, Kono K, Steinman DA (2018) Real-world variability in the prediction of intracranial aneurysm wall shear stress. The 2015 international aneurysm CFD challenge. Cardiovasc Eng Tech 9(4):544–564. https://doi.org/10.1007/s13239-018-00374-2

    Article  Google Scholar 

  17. Berg P, Voß S, Saalfeld S, Janiga G, Bergersen AW, Valen-Sendstad K, Bruening J, Goubergrits L, Spuler A, Cancelliere NM, Steinman DA, Pereira VM, Chiu TL, Tsang ACO, Chung BJ, Cebral JR, Cito S, Pallarès J, Copelli G, Csippa B, Paál G, Fujimura S, Takao H, Hodis S, Hille G, Karmonik C, Elias S, Kellermann K, Khan MO, Marsden AL, Morales HG, Piskin S, Finol EA, Pravdivtseva M, Rajabzadeh-Oghaz H, Paliwal N, Meng H, Seshadhri S, Howard M, Shojima M, Sugiyama S-I, Niizuma K, Sindeev S, Frolov S, Wagner T, Brawanski A, Qian Y, Wu Y-A, Carlson KD, Dragomir-Daescu D, Beuing O (2018) Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): phase I: segmentation. Cardiovas Eng Technol 9(4):565–581. https://doi.org/10.1007/s13239-018-00376-0

    Article  Google Scholar 

  18. Berg P, Saalfeld S, Voß S, Redel T, Preim B, Janiga G, Beuing O (2018) Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J Neurointerv Surg 10(3):290–296. https://doi.org/10.1136/neurintsurg-2017-012996

    Article  CAS  PubMed  Google Scholar 

  19. Chnafa C, Brina O, Pereira VM, Steinman DA (2018) Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. AJNR Am J Neuroradiol 39(2):337–343. https://doi.org/10.3174/ajnr.A5484

    Article  CAS  PubMed  Google Scholar 

  20. Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. In: Proceedings of the national academy of sciences of the United States of America 12(3):207–214

  21. Carty G, Chatpun S, Espino DM (2016) Modeling blood flow through intracranial aneurysms. a comparison of newtonian and non-newtonian viscosity. J Med Biol Eng 36(3):396–409. https://doi.org/10.1007/s40846-016-0142-z

    Article  Google Scholar 

  22. Frolov S, Sindeev S, Liepsch D, Balasso A, Arnold P, Kirschke JS, Prothmann S, Potlov AY (2018) Newtonian and non-Newtonian blood flow at a 90∘-birfurcation of the cerebral artery. A comparative study of fluid viscosity models. J Mech Med Biol 18(05):1850043. https://doi.org/10.1142/s0219519418500434

    Article  Google Scholar 

  23. Fisher C, Rossmann JS (2009) Effect of non-newtonian behavior on hemodynamics of cerebral aneurysms. J Biomech Eng 131(9):91004. https://doi.org/10.1115/1.3148470

    Article  Google Scholar 

  24. Morales HG, Larrabide I, Geers AJ, Aguilar ML, Frangi AF (2013) Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J Biomech 46(13):2158–2164. https://doi.org/10.1016/j.jbiomech.2013.06.034

    Article  PubMed  Google Scholar 

  25. Xiang J, Yu J, Choi H, Dolan Fox JM, Snyder KV, Levy EI, Siddiqui AH, Meng H (2015) Rupture Resemblance Score (RRS): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg 7(7):490–495. https://doi.org/10.1136/neurintsurg-2014-011218

    Article  PubMed  Google Scholar 

  26. Qian Y, Takao H, Umezu M, Murayama Y (2011) Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. AJNR Am J Neuroradiol 32(10):1948–1955. https://doi.org/10.3174/ajnr.A2655

    Article  CAS  PubMed  Google Scholar 

  27. Khan MO, Chnafa C, Gallo D, Molinari F, Morbiducci U, Steinman DA, Valen-Sendstad K (2017) On the quantification and visualization of transient periodic instabilities in pulsatile flows. J Biomech 52:179–182. https://doi.org/10.1016/j.jbiomech.2016.12.037

    Article  PubMed  Google Scholar 

  28. Valen-Sendstad K, Piccinelli M, Steinman DA (2014) High-resolution computational fluid dynamics detects flow instabilities in the carotid siphon: implications for aneurysm initiation and rupture? J Biomech 47(12):3210–3216. https://doi.org/10.1016/j.jbiomech.2014.04.018

    Article  PubMed  Google Scholar 

  29. Valen-Sendstad K, Steinman DA (2014) Mind the gap: impact of computational fluid dynamics solution strategy on prediction of intracranial aneurysm hemodynamics and rupture status indicators. AJNR Am J Neuroradiol 35(3):536–543. https://doi.org/10.3174/ajnr.A3793

    Article  CAS  PubMed  Google Scholar 

  30. Chung BJ, Doddasomayajula R, Mut F, Detmer F, Pritz MB, Hamzei-Sichani F, Brinjikji W, Kallmes DF, Jimenez CM, Putman CM, Cebral JR (2017) Angioarchitectures and Hemodynamic Characteristics of Posterior Communicating Artery Aneurysms and Their Association with Rupture Status. AJNR Am J Neuroradiol 38(11):2111–2118. https://doi.org/10.3174/ajnr.A5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Detmer FJ, Chung BJ, Mut F, Pritz M, Slawski M, Hamzei-Sichani F, Kallmes D, Putman C, Jimenez C, Cebral JR (2018) Development of a statistical model for discrimination of rupture status in posterior communicating artery aneurysms. Acta Neurochirur 160(8):1643–1652. https://doi.org/10.1007/s00701-018-3595-8

    Article  Google Scholar 

  32. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39(11):2997–3002. https://doi.org/10.1161/STROKEAHA.108.521617

    Article  PubMed  PubMed Central  Google Scholar 

  33. Soize S, Gawlitza M, Raoult H, Pierot L (2016) Imaging follow-up of intracranial aneurysms treated by endovascular means: Why, When, and How? Stroke 47(5):1407–1412. https://doi.org/10.1161/STROKEAHA.115.011414

    Article  PubMed  Google Scholar 

  34. Goubergrits L, Hellmeier F, Bruening J, Spuler A, Hege HC, Voß S, Janiga G, Saalfeld S, Beuing O, Berg P (2019) Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—Uncertainty quantification of geometric rupture risk parameters. BioMed Eng OnLine 18(1):35. https://doi.org/10.1186/s12938-019-0657-y

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mirams GR, Pathmanathan P, Gray RA, Challenor P, Clayton RH (2016) Uncertainty and variability in computational and mathematical models of cardiac physiology. J Physiol 594(23):6833–6847. https://doi.org/10.1113/JP271671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sankaran S, Kim HJ, Choi G, Taylor CA (2016) Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity. J Biomech 49(12):2540–2547. https://doi.org/10.1016/j.jbiomech.2016.01.002

    Article  PubMed  Google Scholar 

  37. Schiavazzi DE, Arbia G, Baker C, Hlavacek AM, Hsia TY, Marsden AL, Vignon-Clementel IE (2016) Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int J Numer Methods Biomed Eng 32(3):e02737. https://doi.org/10.1002/cnm.2737

    Article  CAS  Google Scholar 

  38. Doddasomayajula R, Chung B, Hamzei-Sichani F, Putman CM, Cebral JR (2017) Differences in hemodynamics and rupture rate of aneurysms at the bifurcation of the basilar and internal carotid arteries. AJNR Am J Neuroradiol 38(3):570–576. https://doi.org/10.3174/ajnr.A5088

    Article  CAS  PubMed  Google Scholar 

  39. Sano T, Ishida F, Tsuji M, Furukawa K, Shimosaka S, Suzuki H (2017) Hemodynamic differences between ruptured and unruptured cerebral aneurysms simultaneously existing in the same location: 2 case reports and proposal of a novel parameter oscillatory velocity index. World Neurosurg 98:868.e5–868.e10. https://doi.org/10.1016/j.wneu.2016.12.047

    Article  Google Scholar 

  40. Berg P, Beuing O (2018) Multiple intracranial aneurysms: a direct hemodynamic comparison between ruptured and unruptured vessel malformations. Int J Comput Assist Radiol Surg 13(1):83–93. https://doi.org/10.1007/s11548-017-1643-0

    Article  PubMed  Google Scholar 

  41. Voß S, Glaßer S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thévenin D, Janiga G, Berg P (2016) Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. Comput Math Methods Med 2016:9854539. https://doi.org/10.1155/2016/9854539

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, Tulamo R, Hernesniemi J, Niemelä M, Robertson A, Frösen J (2017) Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol 38(1):119–126. https://doi.org/10.3174/ajnr.A4951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Federal Ministry of Education and Research in Germany within the Forschungscampus STIMULATE (Grant Number 13GW0095A) and the German Research Foundation (Grant Number 399581926). The authors highly acknowledge participants of MATCH Phase I, who contributed their segmentation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Berg.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, P., Voß, S., Janiga, G. et al. Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment. Int J CARS 14, 1795–1804 (2019). https://doi.org/10.1007/s11548-019-01986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-01986-2

Keywords

Navigation