Skip to main content

Advertisement

Log in

Symmetry prior for epipolar consistency

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

For a perfectly plane symmetric object, we can find two views—mirrored at the plane of symmetry—that will yield the exact same image of that object. In consequence, having one image of a plane symmetric object and a calibrated camera, we automatically have a second, virtual image of that object if the 3-D location of the symmetry plane is known.

Methods

We propose a method for estimating the symmetry plane from a set of projection images as the solution of a consistency maximization based on epipolar consistency. With the known symmetry plane, we can exploit symmetry to estimate in-plane motion by introducing the X-trajectory that can be acquired with a conventional short-scan trajectory by simply tilting the acquisition plane relative to the plane of symmetry.

Results

We inspect the symmetry plane estimation on a real scan of an anthropomorphic human head phantom and show the robustness using a synthetic dataset. Further, we demonstrate the advantage of the proposed method for estimating in-plane motion using the acquired projection data.

Conclusion

Symmetry breakers in the human body are widely used for the detection of tumors or strokes. We provide a fast estimation of the symmetry plane, robust to outliers, by computing it directly from a set of projections. Further, by coupling the symmetry prior with epipolar consistency, we overcome inherent limitations in the estimation of in-plane motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abdurahman S, Frysch R, Bismark R, Melnik S, Beuing O, Rose G (2018) Beam hardening correction using cone beam consistency conditions. TMI 37(10):2266–2277

    Google Scholar 

  2. Aichert A, Berger M, Wang J, Maass N, Doerfler A, Hornegger J, Maier AK (2015) Epipolar consistency in transmission imaging. TMI 34(11):2205–2219

    Google Scholar 

  3. Berger M, Müller K, Aichert A, Unberath M, Thies J, Choi JH, Fahrig R, Maier A (2016) Marker-free motion correction in weight-bearing cone-beam CT of the knee joint. Med Phys 43(3):1235–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi JH, Fahrig R, Keil A, Besier TF, Pal S, McWalter EJ, Beaupré GS, Maier A (2013) Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization. Med Phys 40(9):091905

    Article  PubMed  PubMed Central  Google Scholar 

  5. Debbeler C, Maass N, Dennerlein F, Buzug T (2013) A new CT rawdata redundancy measure applied to automated misalignment correction. In: Fully 3D, pp 264–267

  6. Defrise M, Clack R (1994) A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection. TMI 13(1):186–195

    CAS  Google Scholar 

  7. Dennerlein F, Jerebko A (2012) Geometric jitter compensation in cone-beam CT through registration of directly and indirectly filtered projections. IEEE Nucl Sci Symp Conf Rec 3:2892–2895

    Google Scholar 

  8. Erihov M, Alpert S, Kisilev P, Hashoul S (2015) A cross saliency approach to asymmetry-based tumor detection. MICCAI 9351:636–643

    Google Scholar 

  9. Field M, Golubitsky M (2009) Symmetry in chaos: a search for pattern in mathematics, art, and nature. SIAM, Philadelphia

    Book  Google Scholar 

  10. Francois AR, Medioni GG, Waupotitsch R (2002) Reconstructing mirror symmetric scenes from a single view using 2 view stereo geometry. In: ICPR, pp 12–16

  11. Francois AR, Medioni GG, Waupotitsch R (2003) Mirror symmetry 2—view stereo geometry. Image Vis Comput 21(2):137–143

    Article  Google Scholar 

  12. Frysch R, Rose G (2015) Rigid motion compensation in C-arm CT using consistency measure on projection data. In: MICCAI, pp 298–306

  13. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  14. Hoffmann M, Würfl T, Maaß N, Dennerlein F, Aichert A, Maier AK (2018) Empirical scatter correction using the epipolar consistency condition. CT-Meeting

  15. Khotanlou H, Colliot O, Atif J, Bloch I (2009) 3d brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst 160(10):1457–1473

    Article  Google Scholar 

  16. Kingston A, Sakellariou A, Varslot T, Myers G, Sheppard A (2011) Reliable automatic alignment of tomographic projection data by passive auto-focus. Med Phys 38(9):4934–45

    Article  CAS  PubMed  Google Scholar 

  17. Liu SX (2009) Symmetry and asymmetry analysis and its implications to computer-aided diagnosis: a review of the literature. J Biomed Inform 42(6):1056–1064

    Article  PubMed  Google Scholar 

  18. Maier A, Hofmann H, Berger M, Fischer P, Schwemmer C, Wu H, Müller K, Hornegger J, Choi JH, Riess C, Keil A, Fahrig R (2013) CONRAD—a software framework for cone-beam imaging in radiology. Med Phys 40(11):111914

    Article  PubMed  PubMed Central  Google Scholar 

  19. Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661

    Article  CAS  PubMed  Google Scholar 

  20. Marola G (1989) On the detection of the axes of symmetry of symmetric and almost symmetric planar images. IEEE Trans Pattern Anal Mach Intell 11(1):104–108

    Article  Google Scholar 

  21. O’Mara D, Owens R (1996) Measuring bilateral symmetry in digital images. In: Proceedings of Digital Processing Applications (TENCON ’96), vol 1. Perth, WA, Australia, pp 151–156

  22. Ouadah S, Jacobson M, Stayman JW, Ehtiati T, Weiss C, Siewerdsen JH (2017) Correction of patient motion in cone-beam CT Correction of patient motion in cone-beam CT using 3D–2D registration. Phys Med Biol 62:8813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Preuhs A, Maier A, Manhart M, Fotouhi J, Navab N, Unberath M (2018) Double your views—exploiting symmetry in transmission imaging. In: MICCAI

  24. Preuhs A, Manhart M, Maier A (2019) Fast epipolar consistency without the need for pseudo matrix inverses. Bildverarbeitung für die Medizin 2019. Springer Vieweg, Wiesbaden, pp 134–139

  25. Preuhs A, Nishant R, Manhart M, Maier A (2018) Maximum likelihood estimation of head motion using epipolar consistency. BVM

  26. Richter-Gebert J (2011) Perspectives on projective geometry: a guided tour through real and complex geometry. Springer, Berlin

    Book  Google Scholar 

  27. Rothwell C, Forsyth DA, Zisserman A, Mundy JL (1993) Extracting projective structure from single perspective views of 3d point sets. In: ICV, pp 573–582

  28. Sisniega A, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W (2017) Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys Med Biol 62(9):3712–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stolfi J (2014) Oriented projective geometry: a framework for geometric computations. Academic Press, London

    Google Scholar 

  30. Sun C, Sherrah J (1997) 3d symmetry detection using the extended Gaussian image. IEEE Trans Pattern Anal Mach Intell 19(2):164–168

    Article  Google Scholar 

  31. Sun T, Kim JH, Fulton R, Nuyts J (2016) An iterative projection-based motion estimation and compensation scheme for head X-ray CT. Med Phys 43(10):12

    Article  Google Scholar 

  32. Tuzikov AV, Colliot O, Bloch I (2002) Brain symmetry plane computation in MR images using inertia axes and optimization. In: Object recognition supported by user interaction for service robots, vol 1. IEEE, Quebec City, Quebec, Canada, pp 516–519. https://ieeexplore.ieee.org/abstract/document/1044783

  33. Vinhais C, Campilho A (2003) Optimal detection of symmetry axis in digital chest x-ray images. In: Iberian conference on pattern recognition and image analysis. Springer, pp 1082–1089

  34. Wicklein J, Kunze H, Kalender Wa, Kyriakou Y (2012) Image features for misalignment correction in medical flat-detector CT. Med Phys 39(8):4918

    Article  PubMed  Google Scholar 

  35. Würfl T, Maaß N, Dennerlein F, Huang X, Maier AK (2017) Epipolar consistency guided beam hardening reduction-\(\text{ecc}^2\). Fully 3D

  36. Xiao Z, Hou Z, Miao C, Wang J (2005) Using phase information for symmetry detection. Pattern Recognit Lett 26(13):1985–1994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Preuhs.

Ethics declarations

Conflict of interest

M. Unberath, J. Fotouhi, N. Navab and A. Maier have no conflict of interest. A. Preuhs and E. Hoppe are funded by Siemens Healthcare GmbH, Forchheim Germany. M. Kowarschik and M. Manhart are employees of Siemens Healthcare GmbH, Forchheim Germany

Informed consent

This article does not contain patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer The concepts and information presented in this paper are based on research and are not commercially available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preuhs, A., Maier, A., Manhart, M. et al. Symmetry prior for epipolar consistency. Int J CARS 14, 1541–1551 (2019). https://doi.org/10.1007/s11548-019-02027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-02027-8

Keywords

Navigation