Skip to main content

Advertisement

Log in

CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

As some of the most important factors for treatment decision of lung cancer (which is the deadliest neoplasm) are staging and histology, this work aimed to associate quantitative contrast-enhanced computed tomography (CT) features from malignant lung tumors with distant and nodal metastases (according to clinical TNM staging) and histopathology (according to biopsy and surgical resection) using radiomics assessment.

Methods

A local cohort of 85 patients were retrospectively (2010–2017) analyzed after approval by the institutional research review board. CT images acquired with the same protocol were semiautomatically segmented by a volumetric segmentation method. Tumors were characterized by quantitative CT features of shape, first-order, second-order, and higher-order textures. Statistical and machine learning analyses assessed the features individually and combined with clinical data.

Results

Univariate and multivariate analyses identified 40, 2003, and 45 quantitative features associated with distant metastasis, nodal metastasis, and histopathology (adenocarcinoma and squamous cell carcinoma), respectively. A machine learning model yielded the highest areas under the receiver operating characteristic curves of 0.92, 0.84, and 0.88 to predict the same previous patterns.

Conclusion

Several radiomic features (including wavelet energies, information measures of correlation and maximum probability from co-occurrence matrix, busyness from neighborhood intensity-difference matrix, directionalities from Tamura’s texture, and fractal dimension estimation) significantly associated with distant metastasis, nodal metastasis, and histology were discovered in this work, presenting great potential as imaging biomarkers for pathological diagnosis and target therapy decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong MC, Lao XQ, Ho KF, Goggins WB, Tse SLA (2017) Incidence and mortality of lung cancer: global trends and association with socioeconomic status. Sci Rep 7:14300

    PubMed  PubMed Central  Google Scholar 

  2. Howlader N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2016) SEER cancer statistics review, 1975–2013. www.seer.cancer.gov/csr/1975_2013/. Accessed 22 July 2019

  3. Cooper WA, O’Toole S, Boyer M, Horvath L, Mahar A (2011) What’s new in non-small cell lung cancer for pathologists: the importance of accurate subtyping, EGFR mutations and ALK rearrangements. Pathology 43:103–115

    CAS  PubMed  Google Scholar 

  4. Koenigkam-Santos M, Muley T, Warth A, Paula W, Lederlin M, Schnabel P, Schlemmer HP, Kauczor HU, Heussel CP, Puderbach M (2014) Morphological computed tomography features of surgically resectable pulmonary squamous cell carcinomas: impact on prognosis and comparison with adenocarcinomas. Eur J Radiol 83:1275–1281

    PubMed  Google Scholar 

  5. Tailor TD, Schmidt RA, Eaton KD, Wood D, Pipavath S (2015) The pseudocavitation sign of lung adenocarcinoma: a distinguishing feature and imaging biomarker of lepidic growth. J Thorac Imaging 30:308–313

    PubMed  Google Scholar 

  6. Yip S, Liu Y, Parmar C, Li Q, Liu S, Qu F, Ye Z, Gillies R, Aerts H (2017) Associations between radiologist-defined semantic and automatically computed radiomic features in non-small cell lung cancer. Sci Rep 7:3519

    PubMed  PubMed Central  Google Scholar 

  7. Giger M (2018) Machine learning in medical imaging. J Am Coll Radiol 15:512–520

    PubMed  Google Scholar 

  8. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    PubMed  Google Scholar 

  9. Larue RT, Defraene G, Ruysscher De, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665

    PubMed  PubMed Central  Google Scholar 

  10. Aerts H, Velazquez E, Leijenaar R, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen M, Leemans C, Dekker A, Quackenbush J, Gillies R, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    CAS  PubMed  Google Scholar 

  11. Halpenny DF, Plodkowski A, Riely G, Zheng J, Litvak A, Moscowitz C, Ginsberg M (2017) Radiogenomic evaluation of lung cancer—Are there imaging characteristics associated with lung adenocarcinomas harboring BRAF mutations? Clin Imaging 42:147–151

    PubMed  Google Scholar 

  12. Sacconi B, Anzidei M, Leonardi A, Boni F, Saba L, Scipione R, Anile M, Rengo M, Longo F, Bezzi M, Venuta F, Napoli A, Laghi A, Catalano C (2017) Analysis of CT features and quantitative texture analysis in patients with lung adenocarcinoma: a correlation with EGFR mutations and survival rates. Clin Radiol 72:443–450

    CAS  PubMed  Google Scholar 

  13. Permuth J, Choi J, Balarunathan Y, Kim J, Chen DT, Chen L, Orcutt S, Doepker M, Gage K, Zhang G, Latifi K, Hoffe S, Jiang K, Coppola D, Centeno B, Magliocco A, Li Q, Trevino J, Merchant N, Gillies R, Malafa M (2016) Combining radiomic features with a miRNA classifier may improve prediction of malignant pathology for pancreatic intraductal papillary mucinous neoplasms. Oncotarget 7:85785

    PubMed  PubMed Central  Google Scholar 

  14. Fedorov A, Beichel R, Cramer J, Finet J, Robin J, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341

    PubMed  PubMed Central  Google Scholar 

  15. Egger J, Kapur T, Fedorov A, Pieper S, Miller J, Veeraraghavan H, Freisleben B, Golby A, Nimsky C, Kikinis R (2013) GBM volumetry using the 3D Slicer medical image computing platform. Sci Rep 3:1364

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Velazquez E, Parmar C, Jermoumi M, Mak R, van Baardwijk A, Fennessy F, Lewis J, Ruysscher D, Kikinis R, Lambin P, Aerts H (2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer. Sci Rep 3:3529

    PubMed  PubMed Central  Google Scholar 

  17. Parmar C, Velazquez E, Leijenaar R, Jermoumi M, Carvalho S, Mak R, Mitra S, Shankar B, Kikinis R, Haibe-Kains B, Lambin P, Aerts H (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS ONE 9:e102107

    PubMed  PubMed Central  Google Scholar 

  18. Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G (2012) SlicerRT: radiation therapy research toolkit for 3D Slicer. Med Phys 39:6332–6338

    PubMed  Google Scholar 

  19. Zhang L, Fried DV, Fave XJ, Hunter L, Yang J, Court L (2015) IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 42:1341–1353

    PubMed  PubMed Central  Google Scholar 

  20. Lux M, Marques O (2013) Visual information retrieval using Java and LIRE. Morgan & Claypool Publishers, Williston

    Google Scholar 

  21. Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Frank E, Hall M, Witten I (2016) The WEKA workbench. Online appendix for data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

  23. Zameer A, Arshad J, Khan A, Raja M (2017) Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers Manag 134:361–372

    Google Scholar 

  24. Ferreira Junior J, Koenigkam-Santos M, Cipriano F, Fabro A, Azevedo-Marques P (2018) Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. Comput Methods Programs Biomed 159:23–30

    PubMed  Google Scholar 

  25. Emaminejad N, Qian W, Guan Y, Tan M, Qiu Y, Liu H, Zheng B (2016) Fusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patients. IEEE Trans Biomed Eng 63:1034–1043

    PubMed  Google Scholar 

  26. Coroller T, Grossmann P, Hou Y, Velazquez E, Leijenaar R, Hermann G, Lambin P, Haibe-Kains B, Mak R, Aerts H (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114:345–350

    PubMed  PubMed Central  Google Scholar 

  27. Shroff GS, Benveniste MF, Groot PM, Wu C, Viswanathan C, Papadimitrakopoulou V, Truong M (2017) Targeted therapy and imaging findings. J Thorac Imaging 32:313–322

    PubMed  Google Scholar 

  28. Mok TS, Wu YL, Thongprasert S, Yang C, Chu D, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, Nishiwaki Y, Ohe Y, Yang J, Chewaskulyong B, Jiang H, Duffield E, Watkins C, Armour A, Fukuoka M (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    CAS  PubMed  Google Scholar 

  29. Tamura T, Kurishima K, Nakazawa K, Kagohashi K, Ishikawa H, Satoh H, Hizawa N (2015) Specific organ metastases and survival in metastatic non-small cell lung cancer. Mol Clin Oncol 3:217–221

    PubMed  Google Scholar 

  30. Zhou H, Dong D, Chen B, Fang M, Cheng Y, Gan Y, Zhang R, Zhang L, Zang Y, Liu Z, Zheng H, Li W, Tian J (2018) Diagnosis of distant metastasis of lung cancer: based on clinical and radiomic features. Transl Oncol 11:31–36

    PubMed  Google Scholar 

  31. Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sánchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    PubMed  Google Scholar 

  32. Zhu X, Dong D, Chen Z, Fang M, Zhang L, Song J, Yu D, Zang Y, Liu Z, Shi J, Tian J (2018) Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur Radiol 28:2772–2778

    PubMed  Google Scholar 

  33. Digumarthy SR, Padole AM, Gullo R, Sequist LV, Kalra MK (2019) Can CT radiomic analysis in NSCLC predict histology and EGFR mutation status? Medicine 98:e13963

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferreira JR, Azevedo-Marques PM, Oliveira MC (2017) Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval. Int J Comput Assist Radiol Surg 12:509–517

    PubMed  Google Scholar 

  35. Guo Y, Bennamoun M, Sohel F, Lu M, Wan J, Kwok N (2016) A comprehensive performance evaluation of 3D local feature descriptors. Int J Comput Vis 116:66–89

    Google Scholar 

  36. Dhara AK, Mukhopadhyay S, Saha P, Garg M, Khandelwal N (2016) Differential geometry-based techniques for characterization of boundary roughness of pulmonary nodules in CT images. Int J Comput Assist Radiol Surg 11:337–349

    PubMed  Google Scholar 

  37. D’Antonoli TA, Farchione A, Lenkowicz J, Chiappetta M, Cicchetti G, Martino A, Ottavianelli A, Manfredi R, Margaritora S, Bonomo L, Valentini V, Larici AR (2019) CT radiomics signature of tumor and peritumoral lung parenchyma to predict nonsmall cell lung cancer postsurgical recurrence risk. Acad Radiol. https://doi.org/10.1016/j.acra.2019.05.019

    Article  Google Scholar 

  38. Levman JE, Martel AL (2011) A margin sharpness measurement for the diagnosis of breast cancer from magnetic resonance imaging examinations. Acad Radiol 18:1577–1581

    PubMed  Google Scholar 

  39. Ferreira JR Jr, Oliveira MC, Azevedo-Marques PM (2018) Characterization of pulmonary nodules based on features of margin sharpness and texture. J Digit Imaging 31:451–463

    PubMed  Google Scholar 

  40. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    CAS  PubMed  Google Scholar 

  41. Chartrand G, Cheng P, Vorontsov E, Drozdzal M, Turcotte S, Pal C, Kadoury S, Tang A (2017) Deep learning: a primer for radiologists. Radiographics 37:2113–2131

    PubMed  Google Scholar 

  42. Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Zang Y, Tian J (2017) Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit 61:663–673

    Google Scholar 

  43. Paul R, Hawkins S, Balagurunathan Y, Schabath M, Gillies R, Hall L, Goldgof D (2016) Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma. Tomography 2:388–395

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Programa de Doutorado Sanduíche no Exterior (PDSE-CAPES) [Grant Number 88881.134004/2016-01], Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grants Numbers 2016/17078-0 and 2014/50889-7].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Raniery Ferreira-Junior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comitê de Ética em Pesquisa do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, reference number 1.996.131) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Junior, J.R., Koenigkam-Santos, M., Magalhães Tenório, A.P. et al. CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. Int J CARS 15, 163–172 (2020). https://doi.org/10.1007/s11548-019-02093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-02093-y

Keywords

Navigation