Skip to main content

Advertisement

Log in

Evaluation of multi-wavelengths LED-based photoacoustic imaging for maximum safe resection of glioma: a proof of concept study

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

A real-time intra-operative imaging modality is required to update the navigation systems during neurosurgery, since precise localization and safe maximal resection of gliomas are of utmost clinical importance. Different intra-operative imaging modalities have been proposed to delineate the resection borders, each with advantages and disadvantages. This preliminary study was designed to simulate the photoacoustic imaging (PAI) to illustrate the brain tumor margin vessels for safe maximal resection of glioma.

Methods

In this study, light emitting diode (LED)-based PAI was selected because of its lower cost, compact size and ease of use. We developed a simulation framework based on multi-wavelength LED-based PAI to further facilitate PAI during neurosurgery. This framework considers a multilayer model of the tumoral and normal brain tissue. The simulation of the optical fluence and absorption map in tissue at different depths was computed by Monte Carlo. Then, the propagation of initial photoacoustic pressure was simulated by using k-wave toolbox.

Results

To evaluate the LED-based PAI, we used three evaluation criteria: signal-to-noise ratio (SNR), contrast ratio (CR) and full width of half maximum (FWHM). Results showed that by using proper wavelengths, the vessels were recovered with the same axial and lateral FWHM. Furthermore, by increasing the wavelength from 532 to 1064 nm, SNR and CR were increased in the deep region. The results showed that vessels with larger diameters at same wavelength have a higher CR with average improvement 28%.

Conclusion

Multi-wavelength LED-based PAI provides detailed images of the blood vessels which are crucial for detection of the residual glioma: The longer wavelengths like 1064 nm can be used for the deeper tumor margins, and the shorter wavelengths like 532 nm for tumor margins closer to the surface. LED-based PAI may be considered as a promising intra-operative imaging modality to delineate tumor margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mezger U, Jendrewski C, Bartels M (2013) Navigation in surgery. Langenbeck’s Arch Surg 398(4):501–514

    Article  Google Scholar 

  2. Almenawer SA, Crevier L, Murty N, Kassam A, Reddy K (2013) Minimal access to deep intracranial lesions using a serial dilatation technique. Neurosurg Rev 36(2):321–330

    Article  PubMed  Google Scholar 

  3. Grunert P, Darabi K, Espinosa J, Filippi R (2003) Computer-aided navigation in neurosurgery. Neurosurg Rev 26(2):73–99

    Article  CAS  PubMed  Google Scholar 

  4. Aghi MK, Nahed BV, Sloan AE, Ryken TC, Kalkanis SN, Olson JJ (2015) The role of surgery in the management of patients with diffuse low grade glioma. J Neurooncol 125(3):503–530

    Article  PubMed  Google Scholar 

  5. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’Yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113(S7):1953–1968

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bloch O, Han SJ, Cha S, Sun MZ, Aghi MK, McDermott MW, Berger MS, Parsa AT (2012) Impact of extent of resection for recurrent glioblastoma on overall survival. J Neurosurg 117(6):1032–1038

    Article  PubMed  Google Scholar 

  7. Zhang ZZ, Shields LB, Sun DA, Zhang YP, Hunt MA, Shields CB (2015) The art of intraoperative glioma identification. Front Oncol 5:175

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Najafzadeh E, Ghadiri H, Alimohamadi M, Farnia P, Mehrmohammadi M, Ahmadian A (2019) Application of multi-wavelength technique for photoacoustic imaging to delineate tumor margins during maximum-safe resection of glioma: a preliminary simulation study. J Clin Neurosci 70:242–246

    Article  CAS  PubMed  Google Scholar 

  9. Hekman MC, Rijpkema M, Langenhuijsen JF, Boerman OC, Oosterwijk E, Mulders PF (2017) Intraoperative imaging techniques to support complete tumor resection in partial nephrectomy. Eur Urol Focus 4:960–968

    Article  PubMed  Google Scholar 

  10. Grunert P, Müller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3(4):166–173

    Article  CAS  PubMed  Google Scholar 

  11. Tormenti MJ, Kostov DB, Gardner PA, Kanter AS, Spiro RM, Okonkwo DO (2010) Intraoperative computed tomography image–guided navigation for posterior thoracolumbar spinal instrumentation in spinal deformity surgery. Neurosurg Focus 28(3):E11

    Article  PubMed  Google Scholar 

  12. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12(11):997–1003

    Article  PubMed  Google Scholar 

  13. Black PM, Moriarty T, Alexander E, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–845

    Article  CAS  PubMed  Google Scholar 

  14. Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 12(11):1062–1070

    Article  PubMed  Google Scholar 

  15. Farnia P, Makkiabadi B, Ahmadian A, Alirezaie J Curvelet based residual complexity objective function for non-rigid registration of pre-operative MRI with intra-operative ultrasound images. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2016. IEEE, pp 1167–1170

  16. Farnia P, Ahmadian A, Shabanian T, Serej ND, Alirezaie J (2015) Brain-shift compensation by non-rigid registration of intra-operative ultrasound images with preoperative MR images based on residual complexity. Int J Comput Assist Radiol Surg 10(5):555–562

    Article  CAS  PubMed  Google Scholar 

  17. Sastry R, Bi WL, Pieper S, Frisken S, Kapur T, Wells W III, Golby AJ (2017) Applications of ultrasound in the resection of brain tumors. J Neuroimaging 27(1):5–15

    Article  PubMed  Google Scholar 

  18. Rivaz H, Chen SJ-S, Collins DL (2014) Automatic deformable MR-ultrasound registration for image-guided neurosurgery. IEEE Trans Med Imaging 34(2):366–380

    Article  PubMed  Google Scholar 

  19. Xiao Y, Eikenes L, Reinertsen I, Rivaz H (2018) Nonlinear deformation of tractography in ultrasound-guided low-grade gliomas resection. Int J Comput Assist Radiol Surg 13(3):457–467

    Article  PubMed  Google Scholar 

  20. Stummer W, Molina ES (2017) Fluorescence imaging/agents in tumor resection. Neurosurg Clin 28(4):569–583

    Article  Google Scholar 

  21. Pogue BW, Gibbs-Strauss SL, Valdés PA, Samkoe KS, Roberts DW, Paulsen KD (2010) Review of neurosurgical fluorescence imaging methodologies. IEEE J Sel Top Quantum Electron 16(3):493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beez T, Sarikaya-Seiwert S, Steiger H-J, Hänggi D (2014) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children—a technical report. Acta Neurochir 156(3):597–604

    Article  PubMed  Google Scholar 

  23. Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang LV, Yao J (2016) A practical guide to photoacoustic tomography in the life sciences. Nat Methods 13(8):627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nasiriavanaki M, Xia J, Wan H, Bauer AQ, Culver JP, Wang LV (2014) High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci 111(1):21–26

    Article  CAS  PubMed  Google Scholar 

  27. Pramanik M, Ku G, Li C, Wang LV (2008) Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Med Phys 35(6Part1):2218–2223

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mehrmohammadi M, Joon Yoon S, Yeager D, Y Emelianov S (2013) Photoacoustic imaging for cancer detection and staging. Curr Mol Imaging 2(1):89–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arabpou S, Najafzadeh E, Farnia P, Ahmadian A, Ghadiri H, Akhoundi MSA (2019) Detection of early stages dental caries using photoacoustic signals: the simulation study. Front Biomed Technol 6:35–40

    Google Scholar 

  30. Hoelen C, De Mul F, Pongers R, Dekker A (1998) Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt Lett 23(8):648–650

    Article  CAS  PubMed  Google Scholar 

  31. Beard P (2011) Biomedical photoacoustic imaging. Interface focus 1(4):602–631

    Article  PubMed  Google Scholar 

  32. Rosencwaig A, Gersho A (1976) Theory of the photoacoustic effect with solids. J Appl Phys 47(1):64–69

    Article  Google Scholar 

  33. Zackrisson S, Van De Ven S, Gambhir S (2014) Light in and sound out: emerging translational strategies for photoacoustic imaging. Can Res 74(4):979–1004

    Article  CAS  Google Scholar 

  34. Upputuri PK, Pramanik M (2016) Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. J Biomed Opt 22(4):041006

    Article  Google Scholar 

  35. Erfanzadeh M, Zhu Q (2019) Photoacoustic imaging with low-cost sources; a review. Photoacoustics 14:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hariri A, Lemaster J, Wang J, Jeevarathinam AS, Chao DL, Jokerst JV (2018) The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging. Photoacoustics 9:10–20

    Article  PubMed  Google Scholar 

  37. Allen TJ, Beard PC (2016) High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics. Biomed Opt Exp 7(4):1260–1270

    Article  CAS  Google Scholar 

  38. Manwar R, Hosseinzadeh M, Hariri A, Kratkiewicz K, Noei S, Avanaki N, Mohammad R (2018) Photoacoustic signal enhancement: towards utilization of low energy laser diodes in real-time photoacoustic imaging. Sensors 18(10):3498

    Article  Google Scholar 

  39. Zafar M, Kratkiewicz K, Manwar R, Avanaki M (2019) Development of low-cost fast photoacoustic computed tomography: system characterization and phantom study. Appl Sci 9(3):374

    Article  CAS  Google Scholar 

  40. Wang L, Jacques SL, Zheng L (1995) MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed 47(2):131–146

    Article  CAS  PubMed  Google Scholar 

  41. Oraevsky A, Karabutov A (2003) Biomedical photonics handbook. Optoacoustic tomography. CRC Press, Boca Raton, pp 31–34

    Google Scholar 

  42. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37

    Article  PubMed  Google Scholar 

  43. Duck FA (2013) Physical properties of tissues: a comprehensive reference book. Academic Press, Cambridge

    Google Scholar 

  44. Farnia P, Najafzadeh E, Hariri A et al (2020) A dictionary learning technique enhances signal in LED-based photoacoustic imaging. Biomed Opt Exp. https://doi.org/10.1364/BOE.387364

    Article  Google Scholar 

Download references

Funding

This work was supported by the Faculty of Medicine, Tehran University of Medical Sciences under Grant Number 32952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmadian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafzadeh, E., Ghadiri, H., Alimohamadi, M. et al. Evaluation of multi-wavelengths LED-based photoacoustic imaging for maximum safe resection of glioma: a proof of concept study. Int J CARS 15, 1053–1062 (2020). https://doi.org/10.1007/s11548-020-02191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-020-02191-2

Keywords

Navigation